
boofcv.examples.stereo.ExampleStereoDisparity3D Maven / Gradle / Ivy
/*
* Copyright (c) 2011-2018, Peter Abeles. All Rights Reserved.
*
* This file is part of BoofCV (http://boofcv.org).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package boofcv.examples.stereo;
import boofcv.abst.distort.FDistort;
import boofcv.alg.geo.PerspectiveOps;
import boofcv.alg.geo.rectify.RectifyCalibrated;
import boofcv.gui.image.ShowImages;
import boofcv.gui.image.VisualizeImageData;
import boofcv.io.UtilIO;
import boofcv.io.calibration.CalibrationIO;
import boofcv.io.image.ConvertBufferedImage;
import boofcv.io.image.UtilImageIO;
import boofcv.struct.calib.StereoParameters;
import boofcv.struct.image.GrayF32;
import boofcv.struct.image.GrayU8;
import boofcv.visualize.PointCloudViewer;
import boofcv.visualize.VisualizeData;
import georegression.geometry.ConvertRotation3D_F64;
import georegression.geometry.GeometryMath_F64;
import georegression.struct.EulerType;
import georegression.struct.point.Point3D_F64;
import georegression.struct.se.Se3_F64;
import org.ejml.data.DMatrixRMaj;
import javax.swing.*;
import java.awt.*;
import java.awt.image.BufferedImage;
import java.io.File;
import java.util.ArrayList;
import java.util.List;
/**
* Expanding upon ExampleStereoDisparity, this example demonstrates how to rescale an image for stereo processing and
* then compute its 3D point cloud. Images are often rescaled to improve speed and some times quality. Creating
* 3D point clouds from disparity images is easy and well documented in the literature, but there are some nuances
* to it.
*
* @author Peter Abeles
*/
public class ExampleStereoDisparity3D {
// Specifies what size input images are scaled to
public static final double scale = 0.5;
// Specifies what range of disparity is considered
public static final int minDisparity = 0;
public static final int maxDisparity = 40;
public static final int rangeDisparity = maxDisparity-minDisparity;
public static void main( String args[] ) {
// ------------- Compute Stereo Correspondence
// Load camera images and stereo camera parameters
String calibDir = UtilIO.pathExample("calibration/stereo/Bumblebee2_Chess/");
String imageDir = UtilIO.pathExample("stereo/");
StereoParameters param = CalibrationIO.load(new File(calibDir , "stereo.yaml"));
// load and convert images into a BoofCV format
BufferedImage origLeft = UtilImageIO.loadImage(imageDir , "chair01_left.jpg");
BufferedImage origRight = UtilImageIO.loadImage(imageDir , "chair01_right.jpg");
GrayU8 distLeft = ConvertBufferedImage.convertFrom(origLeft, (GrayU8) null);
GrayU8 distRight = ConvertBufferedImage.convertFrom(origRight,(GrayU8)null);
// re-scale input images
GrayU8 scaledLeft = new GrayU8((int)(distLeft.width*scale),(int)(distLeft.height*scale));
GrayU8 scaledRight = new GrayU8((int)(distRight.width*scale),(int)(distRight.height*scale));
new FDistort(distLeft,scaledLeft).scaleExt().apply();
new FDistort(distRight,scaledRight).scaleExt().apply();
// Don't forget to adjust camera parameters for the change in scale!
PerspectiveOps.scaleIntrinsic(param.left, scale);
PerspectiveOps.scaleIntrinsic(param.right,scale);
// rectify images and compute disparity
GrayU8 rectLeft = new GrayU8(scaledLeft.width,scaledLeft.height);
GrayU8 rectRight = new GrayU8(scaledRight.width,scaledRight.height);
RectifyCalibrated rectAlg = ExampleStereoDisparity.rectify(scaledLeft,scaledRight,param,rectLeft,rectRight);
// GrayU8 disparity = ExampleStereoDisparity.denseDisparity(rectLeft, rectRight, 3,minDisparity, maxDisparity);
GrayF32 disparity = ExampleStereoDisparity.denseDisparitySubpixel(rectLeft, rectRight, 3, minDisparity, maxDisparity);
// ------------- Convert disparity image into a 3D point cloud
// The point cloud will be in the left cameras reference frame
DMatrixRMaj rectK = rectAlg.getCalibrationMatrix();
DMatrixRMaj rectR = rectAlg.getRectifiedRotation();
// extract intrinsic parameters from rectified camera
double baseline = param.getBaseline()*0.1;
double fx = rectK.get(0,0);
double fy = rectK.get(1,1);
double cx = rectK.get(0,2);
double cy = rectK.get(1,2);
double maxZ = baseline*100;
// Iterate through each pixel in disparity image and compute its 3D coordinate
PointCloudViewer pcv = VisualizeData.createPointCloudViewer();
pcv.setTranslationStep(1.5);
List temp = new ArrayList<>();
Point3D_F64 pointRect = new Point3D_F64();
Point3D_F64 pointLeft = new Point3D_F64();
for( int y = 0; y < disparity.height; y++ ) {
for( int x = 0; x < disparity.width; x++ ) {
double d = disparity.unsafe_get(x,y) + minDisparity;
// skip over pixels were no correspondence was found
if( d >= rangeDisparity || d <= 0 )
continue;
// Coordinate in rectified camera frame
pointRect.z = baseline*fx/d;
pointRect.x = pointRect.z*(x - cx)/fx;
pointRect.y = pointRect.z*(y - cy)/fy;
// prune points which are likely to be noise
if( pointRect.z >= maxZ )
continue;
// rotate into the original left camera frame
GeometryMath_F64.multTran(rectR, pointRect, pointLeft);
// add pixel to the view for display purposes and sets its gray scale value
int v = rectLeft.unsafe_get(x, y);
pcv.addPoint(pointLeft.x,pointLeft.y,pointLeft.z,v << 16 | v << 8 | v);
// temp.add( pointLeft.copy() );
}
}
// move it back a bit to make the 3D structure more apparent
Se3_F64 cameraToWorld = new Se3_F64();
cameraToWorld.T.z = -baseline*5;
cameraToWorld.T.x = baseline*12;
ConvertRotation3D_F64.eulerToMatrix(EulerType.XYZ,0.1,-0.4,0,cameraToWorld.R);
// Configure the display
// pcv.addCloud(temp);
// pcv.setShowAxis(true);
pcv.setCameraHFov(PerspectiveOps.computeHFov(param.left));
pcv.setCameraToWorld(cameraToWorld);
JComponent viewer = pcv.getComponent();
viewer.setPreferredSize(new Dimension(600,600*param.left.height/param.left.width));
// display the results. Click and drag to change point cloud camera
BufferedImage visualized = VisualizeImageData.disparity(disparity, null,minDisparity, maxDisparity,0);
ShowImages.showWindow(visualized,"Disparity", true);
ShowImages.showWindow(viewer,"Point Cloud", true);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy