
boofcv.examples.fiducial.ExampleFiducialImage Maven / Gradle / Ivy
/*
* Copyright (c) 2011-2019, Peter Abeles. All Rights Reserved.
*
* This file is part of BoofCV (http://boofcv.org).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package boofcv.examples.fiducial;
import boofcv.abst.fiducial.SquareImage_to_FiducialDetector;
import boofcv.alg.distort.LensDistortionNarrowFOV;
import boofcv.alg.distort.brown.LensDistortionBrown;
import boofcv.factory.fiducial.ConfigFiducialImage;
import boofcv.factory.fiducial.FactoryFiducial;
import boofcv.factory.filter.binary.ConfigThreshold;
import boofcv.factory.filter.binary.ThresholdType;
import boofcv.gui.feature.VisualizeShapes;
import boofcv.gui.fiducial.VisualizeFiducial;
import boofcv.gui.image.ShowImages;
import boofcv.io.UtilIO;
import boofcv.io.calibration.CalibrationIO;
import boofcv.io.image.ConvertBufferedImage;
import boofcv.io.image.UtilImageIO;
import boofcv.struct.calib.CameraPinholeBrown;
import boofcv.struct.image.GrayF32;
import boofcv.struct.image.ImageType;
import georegression.struct.point.Point2D_F64;
import georegression.struct.se.Se3_F64;
import georegression.struct.shapes.Polygon2D_F64;
import java.awt.*;
import java.awt.image.BufferedImage;
import java.io.File;
import static boofcv.io.image.UtilImageIO.loadImage;
/**
* Detects square binary fiducials inside an image, writes out there pose, and visualizes a virtual flat cube
* above them in the input image.
*
* @author Peter Abeles
*/
public class ExampleFiducialImage {
public static void main(String[] args) {
String imagePath = UtilIO.pathExample("fiducial/image/examples/");
String patternPath = UtilIO.pathExample("fiducial/image/patterns/");
// String imageName = "image00.jpg";
String imageName = "image01.jpg";
// String imageName = "image02.jpg";
// load the lens distortion parameters and the input image
CameraPinholeBrown param = CalibrationIO.load(new File(imagePath, "intrinsic.yaml"));
LensDistortionNarrowFOV lensDistortion = new LensDistortionBrown(param);
BufferedImage input = UtilImageIO.loadImage(imagePath, imageName);
GrayF32 original = ConvertBufferedImage.convertFrom(input, true, ImageType.single(GrayF32.class));
// Detect the fiducial
SquareImage_to_FiducialDetector detector = FactoryFiducial.squareImage(
new ConfigFiducialImage(), ConfigThreshold.local(ThresholdType.LOCAL_MEAN, 21), GrayF32.class);
// new ConfigFiducialImage(), ConfigThreshold.fixed(100), GrayF32.class);
// give it a description of all the targets
double width = 4; // 4 cm
detector.addPatternImage(loadImage(patternPath , "ke.png", GrayF32.class), 100, width);
detector.addPatternImage(loadImage(patternPath , "dog.png", GrayF32.class), 100, width);
detector.addPatternImage(loadImage(patternPath , "yu.png", GrayF32.class), 100, width);
detector.addPatternImage(loadImage(patternPath , "yu_inverted.png", GrayF32.class), 100, width);
detector.addPatternImage(loadImage(patternPath , "pentarose.png", GrayF32.class), 100, width);
detector.addPatternImage(loadImage(patternPath , "text_boofcv.png", GrayF32.class), 100, width);
detector.addPatternImage(loadImage(patternPath , "leaf01.png", GrayF32.class), 100, width);
detector.addPatternImage(loadImage(patternPath , "leaf02.png", GrayF32.class), 100, width);
detector.addPatternImage(loadImage(patternPath , "hand01.png", GrayF32.class), 100, width);
detector.addPatternImage(loadImage(patternPath , "chicken.png", GrayF32.class), 100, width);
detector.addPatternImage(loadImage(patternPath , "h2o.png", GrayF32.class), 100, width);
detector.addPatternImage(loadImage(patternPath , "yinyang.png", GrayF32.class), 100, width);
detector.setLensDistortion(lensDistortion,param.width,param.height);
detector.detect(original);
// print the results
Graphics2D g2 = input.createGraphics();
Se3_F64 targetToSensor = new Se3_F64();
Point2D_F64 locationPixel = new Point2D_F64();
Polygon2D_F64 bounds = new Polygon2D_F64();
for (int i = 0; i < detector.totalFound(); i++) {
detector.getCenter(i, locationPixel);
detector.getBounds(i, bounds);
g2.setColor(new Color(50,50,255));
g2.setStroke(new BasicStroke(10));
VisualizeShapes.drawPolygon(bounds,true,1.0,g2);
if( detector.hasID() )
System.out.println("Target ID = "+detector.getId(i));
if( detector.hasMessage() )
System.out.println("Message = "+detector.getMessage(i));
System.out.println("2D Image Location = "+locationPixel);
if( detector.is3D() ) {
detector.getFiducialToCamera(i, targetToSensor);
System.out.println("3D Location:");
System.out.println(targetToSensor);
VisualizeFiducial.drawCube(targetToSensor, param, detector.getWidth(i), 3, g2);
VisualizeFiducial.drawLabelCenter(targetToSensor, param, "" + detector.getId(i), g2);
} else {
VisualizeFiducial.drawLabel(locationPixel, "" + detector.getId(i), g2);
}
}
ShowImages.showWindow(input,"Fiducials",true);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy