Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/*
* Copyright (c) 2011-2018, Peter Abeles. All Rights Reserved.
*
* This file is part of BoofCV (http://boofcv.org).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package boofcv.examples.features;
import boofcv.alg.feature.detect.edge.CannyEdge;
import boofcv.alg.feature.detect.edge.EdgeContour;
import boofcv.alg.filter.binary.BinaryImageOps;
import boofcv.alg.filter.binary.Contour;
import boofcv.factory.feature.detect.edge.FactoryEdgeDetectors;
import boofcv.gui.ListDisplayPanel;
import boofcv.gui.binary.VisualizeBinaryData;
import boofcv.gui.image.ShowImages;
import boofcv.io.UtilIO;
import boofcv.io.image.ConvertBufferedImage;
import boofcv.io.image.UtilImageIO;
import boofcv.struct.ConnectRule;
import boofcv.struct.image.GrayS16;
import boofcv.struct.image.GrayU8;
import java.awt.image.BufferedImage;
import java.util.List;
/**
* Demonstration of the Canny edge detection algorithm. In this implementation the output can be a binary image and/or
* a graph describing each contour.
*
* @author Peter Abeles
*/
public class ExampleCannyEdge {
public static void main( String args[] ) {
BufferedImage image = UtilImageIO.loadImage(UtilIO.pathExample("simple_objects.jpg"));
GrayU8 gray = ConvertBufferedImage.convertFrom(image,(GrayU8)null);
GrayU8 edgeImage = gray.createSameShape();
// Create a canny edge detector which will dynamically compute the threshold based on maximum edge intensity
// It has also been configured to save the trace as a graph. This is the graph created while performing
// hysteresis thresholding.
CannyEdge canny = FactoryEdgeDetectors.canny(2,true, true, GrayU8.class, GrayS16.class);
// The edge image is actually an optional parameter. If you don't need it just pass in null
canny.process(gray,0.1f,0.3f,edgeImage);
// First get the contour created by canny
List edgeContours = canny.getContours();
// The 'edgeContours' is a tree graph that can be difficult to process. An alternative is to extract
// the contours from the binary image, which will produce a single loop for each connected cluster of pixels.
// Note that you are only interested in external contours.
List contours = BinaryImageOps.contourExternal(edgeImage, ConnectRule.EIGHT);
// display the results
BufferedImage visualBinary = VisualizeBinaryData.renderBinary(edgeImage, false, null);
BufferedImage visualCannyContour = VisualizeBinaryData.renderContours(edgeContours,null,
gray.width,gray.height,null);
BufferedImage visualEdgeContour = new BufferedImage(gray.width, gray.height,BufferedImage.TYPE_INT_RGB);
VisualizeBinaryData.render(contours, (int[]) null, visualEdgeContour);
ListDisplayPanel panel = new ListDisplayPanel();
panel.addImage(visualBinary,"Binary Edges from Canny");
panel.addImage(visualCannyContour, "Canny Trace Graph");
panel.addImage(visualEdgeContour,"Contour from Canny Binary");
ShowImages.showWindow(panel,"Canny Edge", true);
}
}