boofcv.examples.geometry.ExampleDepthPointCloud Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of examples Show documentation
Show all versions of examples Show documentation
BoofCV is an open source Java library for real-time computer vision and robotics applications.
/*
* Copyright (c) 2021, Peter Abeles. All Rights Reserved.
*
* This file is part of BoofCV (http://boofcv.org).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package boofcv.examples.geometry;
import boofcv.alg.depth.VisualDepthOps;
import boofcv.alg.geo.PerspectiveOps;
import boofcv.alg.misc.ImageStatistics;
import boofcv.gui.image.ShowImages;
import boofcv.gui.image.VisualizeImageData;
import boofcv.io.UtilIO;
import boofcv.io.calibration.CalibrationIO;
import boofcv.io.image.ConvertBufferedImage;
import boofcv.io.image.UtilImageIO;
import boofcv.struct.calib.VisualDepthParameters;
import boofcv.struct.image.GrayU16;
import boofcv.struct.image.GrayU8;
import boofcv.struct.image.Planar;
import boofcv.visualize.PointCloudViewer;
import boofcv.visualize.VisualizeData;
import georegression.struct.point.Point3D_F64;
import org.ddogleg.struct.DogArray;
import java.awt.*;
import java.awt.image.BufferedImage;
/**
* Example of how to create a point cloud from a RGB-D (Kinect) sensor. Data is loaded from two files, one for the
* visual image and one for the depth image.
*
* @author Peter Abeles
*/
public class ExampleDepthPointCloud {
public static void main( String[] args ) {
String nameRgb = UtilIO.pathExample("kinect/basket/basket_rgb.png");
String nameDepth = UtilIO.pathExample("kinect/basket/basket_depth.png");
String nameCalib = UtilIO.pathExample("kinect/basket/visualdepth.yaml");
VisualDepthParameters param = CalibrationIO.load(nameCalib);
BufferedImage buffered = UtilImageIO.loadImageNotNull(nameRgb);
Planar rgb = ConvertBufferedImage.convertFromPlanar(buffered, null, true, GrayU8.class);
GrayU16 depth = ConvertBufferedImage.convertFrom(UtilImageIO.loadImageNotNull(nameDepth), null, GrayU16.class);
var cloud = new DogArray<>(Point3D_F64::new);
var cloudColor = new DogArray<>(() -> new int[3]);
VisualDepthOps.depthTo3D(param.visualParam, rgb, depth, cloud, cloudColor);
PointCloudViewer viewer = VisualizeData.createPointCloudViewer();
viewer.setCameraHFov(PerspectiveOps.computeHFov(param.visualParam));
viewer.setTranslationStep(15);
for (int i = 0; i < cloud.size; i++) {
Point3D_F64 p = cloud.get(i);
int[] color = cloudColor.get(i);
int c = (color[0] << 16) | (color[1] << 8) | color[2];
viewer.addPoint(p.x, p.y, p.z, c);
}
viewer.getComponent().setPreferredSize(new Dimension(rgb.width, rgb.height));
// ---------- Display depth image
// use the actual max value in the image to maximize its appearance
int maxValue = ImageStatistics.max(depth);
BufferedImage depthOut = VisualizeImageData.disparity(depth, null, maxValue, 0);
ShowImages.showWindow(depthOut, "Depth Image", true);
// ---------- Display colorized point cloud
ShowImages.showWindow(viewer.getComponent(), "Point Cloud", true);
System.out.println("Total points = " + cloud.size);
}
}