boofcv.examples.recognition.ExampleImageClassification Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of examples Show documentation
Show all versions of examples Show documentation
BoofCV is an open source Java library for real-time computer vision and robotics applications.
/*
* Copyright (c) 2022, Peter Abeles. All Rights Reserved.
*
* This file is part of BoofCV (http://boofcv.org).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package boofcv.examples.recognition;
import boofcv.abst.scene.ImageClassifier;
import boofcv.factory.scene.ClassifierAndSource;
import boofcv.factory.scene.FactoryImageClassifier;
import boofcv.gui.ImageClassificationPanel;
import boofcv.gui.image.ShowImages;
import boofcv.io.UtilIO;
import boofcv.io.image.ConvertBufferedImage;
import boofcv.io.image.UtilImageIO;
import boofcv.struct.image.GrayF32;
import boofcv.struct.image.Planar;
import deepboof.io.DeepBoofDataBaseOps;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import java.util.Collections;
import java.util.List;
/**
* This example shows how to create an image classifier using the high level factory, download the model, load it,
* process images, and then look at the results.
*
* @author Peter Abeles
*/
public class ExampleImageClassification {
public static void main( String[] args ) throws IOException {
ClassifierAndSource cs = FactoryImageClassifier.vgg_cifar10(); // Test set 89.9% for 10 categories
// ClassifierAndSource cs = FactoryImageClassifier.nin_imagenet(); // Test set 62.6% for 1000 categories
File modelPath = DeepBoofDataBaseOps.downloadModel(cs.getSource(), new File("download_data"));
ImageClassifier> classifier = cs.getClassifier();
classifier.loadModel(modelPath);
List categories = classifier.getCategories();
String imagePath = UtilIO.pathExample("recognition/pixabay");
List images = UtilIO.listByPrefix(imagePath, null, ".jpg");
Collections.sort(images);
var gui = new ImageClassificationPanel();
ShowImages.showWindow(gui, "Image Classification", true);
for (String path : images) {
File f = new File(path);
BufferedImage buffered = UtilImageIO.loadImageNotNull(path);
Planar image = new Planar<>(GrayF32.class, buffered.getWidth(), buffered.getHeight(), 3);
ConvertBufferedImage.convertFromPlanar(buffered, image, true, GrayF32.class);
classifier.classify(image);
// add image and results to the GUI for display
gui.addImage(buffered, f.getName(), classifier.getAllResults(), categories);
}
}
}