boofcv.examples.segmentation.ExampleThresholding Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of examples Show documentation
Show all versions of examples Show documentation
BoofCV is an open source Java library for real-time computer vision and robotics applications.
/*
* Copyright (c) 2022, Peter Abeles. All Rights Reserved.
*
* This file is part of BoofCV (http://boofcv.org).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package boofcv.examples.segmentation;
import boofcv.alg.filter.binary.GThresholdImageOps;
import boofcv.alg.misc.ImageStatistics;
import boofcv.gui.ListDisplayPanel;
import boofcv.gui.binary.VisualizeBinaryData;
import boofcv.gui.image.ShowImages;
import boofcv.io.UtilIO;
import boofcv.io.image.ConvertBufferedImage;
import boofcv.io.image.UtilImageIO;
import boofcv.struct.ConfigLength;
import boofcv.struct.image.GrayF32;
import boofcv.struct.image.GrayU8;
import java.awt.image.BufferedImage;
/**
* Demonstration of different techniques for automatic thresholding an image to create a binary image. The binary
* image can then be used for shape analysis and other applications. Global methods apply the same threshold
* to the entire image. Local methods compute a local threshold around each pixel and can handle uneven
* lighting, but produce noisy results in regions with uniform lighting.
*
* @author Peter Abeles
* @see boofcv.examples.imageprocessing.ExampleBinaryOps
*/
public class ExampleThresholding {
public static void threshold( String imageName ) {
BufferedImage image = UtilImageIO.loadImageNotNull(imageName);
// convert into a usable format
GrayF32 input = ConvertBufferedImage.convertFromSingle(image, null, GrayF32.class);
var binary = new GrayU8(input.width, input.height);
// Display multiple images in the same window
var gui = new ListDisplayPanel();
// Global Methods
GThresholdImageOps.threshold(input, binary, ImageStatistics.mean(input), true);
gui.addImage(VisualizeBinaryData.renderBinary(binary, false, null), "Global: Mean");
GThresholdImageOps.threshold(input, binary, GThresholdImageOps.computeOtsu(input, 0, 255), true);
gui.addImage(VisualizeBinaryData.renderBinary(binary, false, null), "Global: Otsu");
GThresholdImageOps.threshold(input, binary, GThresholdImageOps.computeEntropy(input, 0, 255), true);
gui.addImage(VisualizeBinaryData.renderBinary(binary, false, null), "Global: Entropy");
// Local method
GThresholdImageOps.localMean(input, binary, ConfigLength.fixed(57), 1.0, true, null, null, null);
gui.addImage(VisualizeBinaryData.renderBinary(binary, false, null), "Local: Mean");
GThresholdImageOps.localGaussian(input, binary, ConfigLength.fixed(85), 1.0, true, null, null);
gui.addImage(VisualizeBinaryData.renderBinary(binary, false, null), "Local: Gaussian");
GThresholdImageOps.localNiblack(input, binary, ConfigLength.fixed(11), 0.30f, true);
gui.addImage(VisualizeBinaryData.renderBinary(binary, false, null), "Local: Niblack");
GThresholdImageOps.localSauvola(input, binary, ConfigLength.fixed(11), 0.30f, true);
gui.addImage(VisualizeBinaryData.renderBinary(binary, false, null), "Local: Sauvola");
GThresholdImageOps.localWolf(input, binary, ConfigLength.fixed(11), 0.30f, true);
gui.addImage(VisualizeBinaryData.renderBinary(binary, false, null), "Local: Wolf");
GThresholdImageOps.localNick(input, binary, ConfigLength.fixed(11), -0.2f, true);
gui.addImage(VisualizeBinaryData.renderBinary(binary, false, null), "Local: NICK");
GThresholdImageOps.blockMinMax(input, binary, ConfigLength.fixed(21), 1.0, true, 15);
gui.addImage(VisualizeBinaryData.renderBinary(binary, false, null), "Block: Min-Max");
GThresholdImageOps.blockMean(input, binary, ConfigLength.fixed(21), 1.0, true);
gui.addImage(VisualizeBinaryData.renderBinary(binary, false, null), "Block: Mean");
GThresholdImageOps.blockOtsu(input, binary, false, ConfigLength.fixed(21), 0.5, 1.0, true);
gui.addImage(VisualizeBinaryData.renderBinary(binary, false, null), "Block: Otsu");
// Sauvola is tuned for text image. Change radius to make it run better in others.
// Show the image image for reference
gui.addImage(ConvertBufferedImage.convertTo(input, null), "Input Image");
String fileName = imageName.substring(imageName.lastIndexOf('/') + 1);
ShowImages.showWindow(gui, fileName);
}
public static void main( String[] args ) {
// example in which global thresholding works best
threshold(UtilIO.pathExample("particles01.jpg"));
// example in which adaptive/local thresholding works best
threshold(UtilIO.pathExample("segment/uneven_lighting_squares.jpg"));
// hand written text with non-uniform stained background
threshold(UtilIO.pathExample("segment/stained_handwriting.jpg"));
}
}