boofcv.alg.background.moving.BackgroundMovingGaussian_IL Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of feature Show documentation
Show all versions of feature Show documentation
BoofCV is an open source Java library for real-time computer vision and robotics applications.
/*
* Copyright (c) 2011-2015, Peter Abeles. All Rights Reserved.
*
* This file is part of BoofCV (http://boofcv.org).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package boofcv.alg.background.moving;
import boofcv.alg.interpolate.InterpolatePixelMB;
import boofcv.alg.interpolate.TypeInterpolate;
import boofcv.alg.misc.GImageMiscOps;
import boofcv.core.image.FactoryGImageMultiBand;
import boofcv.core.image.GImageMultiBand;
import boofcv.core.image.border.BorderType;
import boofcv.factory.interpolate.FactoryInterpolation;
import boofcv.struct.distort.PointTransformModel_F32;
import boofcv.struct.image.ImageInterleaved;
import boofcv.struct.image.ImageType;
import boofcv.struct.image.ImageUInt8;
import boofcv.struct.image.InterleavedF32;
import georegression.struct.InvertibleTransform;
/**
* Implementation of {@link BackgroundMovingGaussian} for {@link ImageInterleaved}.
*
* @author Peter Abeles
*/
public class BackgroundMovingGaussian_IL>
extends BackgroundMovingGaussian
{
// interpolates the input image
protected InterpolatePixelMB interpolateInput;
// interpolates the background image
protected InterpolatePixelMB interpolationBG;
// wrappers which provide abstraction across image types
protected GImageMultiBand inputWrapper;
// storage for multi-band pixel values
protected float[] pixelBG;
protected float[] pixelInput;
// background is composed of bands*2 channels. even = mean, odd = variance
InterleavedF32 background;
/**
* Configurations background removal.
*
* @param learnRate Specifies how quickly the background is updated. 0 = static 1.0 = instant. Try 0.05
* @param threshold Threshold for background. Consult a chi-square table for reasonably values.
* 10 to 16 for 1 to 3 bands.
* @param transform Used to apply motion model
* @param interpType Type of interpolation. BILINEAR recommended for accuracy. NEAREST_NEIGHBOR for speed. .
* @param imageType Type of input image.
*/
public BackgroundMovingGaussian_IL(float learnRate, float threshold,
PointTransformModel_F32 transform,
TypeInterpolate interpType,
ImageType imageType)
{
super(learnRate, threshold, transform, imageType);
int numBands = imageType.getNumBands();
this.interpolateInput = FactoryInterpolation.createPixelMB(0, 255,
TypeInterpolate.BILINEAR, BorderType.EXTENDED, imageType);
background = new InterleavedF32(1,1,2*numBands);
this.interpolationBG = FactoryInterpolation.createPixelMB(
0, 255, interpType, BorderType.EXTENDED, ImageType.il(numBands*2, InterleavedF32.class));
this.interpolationBG.setImage(background);
inputWrapper = FactoryGImageMultiBand.create(imageType);
pixelBG = new float[2*numBands];
pixelInput = new float[numBands];
}
@Override
public void initialize(int backgroundWidth, int backgroundHeight, Motion homeToWorld) {
background.reshape(backgroundWidth,backgroundHeight);
GImageMiscOps.fill(background, -1);
this.homeToWorld.set(homeToWorld);
this.homeToWorld.invert(worldToHome);
this.backgroundWidth = backgroundWidth;
this.backgroundHeight = backgroundHeight;
}
@Override
public void reset() {
GImageMiscOps.fill(background, -1);
}
@Override
protected void updateBackground(int x0, int y0, int x1, int y1, T frame) {
transform.setModel(worldToCurrent);
interpolateInput.setImage(frame);
float minusLearn = 1.0f - learnRate;
final int numBands = background.getNumBands()/2;
for (int y = y0; y < y1; y++) {
int indexBG = background.startIndex + y*background.stride + x0*background.numBands;
for (int x = x0; x < x1; x++, indexBG += numBands*2 ) {
transform.compute(x,y,work);
if( work.x >= 0 && work.x < frame.width && work.y >= 0 && work.y < frame.height) {
interpolateInput.get(work.x,work.y,pixelInput);
for (int band = 0; band < numBands; band++) {
int indexBG_band = indexBG + band*2;
float inputValue = pixelInput[band];
float meanBG = background.data[indexBG_band];
float varianceBG = background.data[indexBG_band + 1];
if( varianceBG < 0) {
background.data[indexBG_band] = inputValue;
background.data[indexBG_band+1] = initialVariance;
} else {
float diff = meanBG-inputValue;
background.data[indexBG_band] = minusLearn*meanBG + learnRate*inputValue;
background.data[indexBG_band+1] = minusLearn*varianceBG + learnRate*diff*diff;
}
}
}
}
}
}
@Override
protected void _segment(Motion currentToWorld, T frame, ImageUInt8 segmented) {
transform.setModel(currentToWorld);
inputWrapper.wrap(frame);
final int numBands = background.getNumBands()/2;
float adjustedMinimumDifference = minimumDifference*numBands;
for (int y = 0; y < frame.height; y++) {
int indexFrame = frame.startIndex + y*frame.stride;
int indexSegmented = segmented.startIndex + y*segmented.stride;
for (int x = 0; x < frame.width; x++, indexFrame += numBands , indexSegmented++ ) {
transform.compute(x,y,work);
escapeIf:if( work.x >= 0 && work.x < background.width && work.y >= 0 && work.y < background.height) {
interpolationBG.get(work.x,work.y,pixelBG);
inputWrapper.getF(indexFrame,pixelInput);
float mahalanobis = 0;
for (int band = 0; band < numBands; band++) {
float meanBG = pixelBG[band*2];
float varBG = pixelBG[band*2+1];
if (varBG < 0) {
segmented.data[indexSegmented] = unknownValue;
break escapeIf;
} else {
float diff = meanBG - pixelInput[band];
mahalanobis += diff * diff / varBG;
}
}
if (mahalanobis <= threshold) {
segmented.data[indexSegmented] = 0;
} else {
if( minimumDifference > 0 ) {
float sumAbsDiff = 0;
for (int band = 0; band < numBands; band++) {
sumAbsDiff += Math.abs(pixelBG[band * 2] - pixelInput[band]);
}
if (sumAbsDiff >= adjustedMinimumDifference) {
segmented.data[indexSegmented] = 1;
} else {
segmented.data[indexSegmented] = 0;
}
} else {
segmented.data[indexSegmented] = 1;
}
}
} else {
// there is no background here. Just mark it as not moving to avoid false positives
segmented.data[indexSegmented] = unknownValue;
}
}
}
}
}