All Downloads are FREE. Search and download functionalities are using the official Maven repository.

boofcv.alg.tracker.combined.CombinedTrackerScalePoint Maven / Gradle / Ivy

Go to download

BoofCV is an open source Java library for real-time computer vision and robotics applications.

There is a newer version: 0.26
Show newest version
/*
 * Copyright (c) 2011-2013, Peter Abeles. All Rights Reserved.
 *
 * This file is part of BoofCV (http://boofcv.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package boofcv.alg.tracker.combined;

import boofcv.abst.feature.associate.AssociateDescription;
import boofcv.abst.feature.detdesc.DetectDescribePoint;
import boofcv.struct.feature.AssociatedIndex;
import boofcv.struct.feature.TupleDesc;
import boofcv.struct.image.ImageSingleBand;
import boofcv.struct.pyramid.PyramidDiscrete;
import georegression.struct.point.Point2D_F64;
import org.ddogleg.struct.FastQueue;

import java.util.ArrayList;
import java.util.List;
import java.util.Stack;

/**
 * 

* Combines a KLT tracker with Detect-Describe-Associate type trackers. Features are nominally tracked * using KLT, but after KLT drops a track it is deactivated and made dormant. Upon request, it will * attempt to reactivate a dormant track by associating it with newly detected features. After a * track has been reactivated it will be tracked normally. *

* * @author Peter Abeles */ // TODO Two versions. One for InterestPointDetector and one for corners public class CombinedTrackerScalePoint { // current image in sequence private I input; // The KLT tracker used to perform the nominal track update protected PyramidKltForCombined trackerKlt; // feature detector and describer protected DetectDescribePoint detector; // Used to associate features using their DDA description protected AssociateDescription associate; // all active tracks that have been tracked purely by KLT protected List> tracksPureKlt = new ArrayList>(); // tracks that had been dropped by KLT but have been reactivated protected List> tracksReactivated = new ArrayList>(); // tracks that are not actively being tracked protected List> tracksDormant = new ArrayList>(); // recently spawned tracks protected List> tracksSpawned = new ArrayList>(); // track points whose data is to be reused protected Stack> tracksUnused = new Stack>(); // local storage used by association protected FastQueue detectedDesc; protected FastQueue knownDesc; // number of tracks it has created protected long totalTracks = 0; // Marks a known track as being associated private boolean associated[] = new boolean[1]; /** * Configures tracker * * @param trackerKlt KLT tracker used nominally * @param detector Feature detector * @param associate Association algorithm */ public CombinedTrackerScalePoint(PyramidKltForCombined trackerKlt, DetectDescribePoint detector, AssociateDescription associate ) { this.trackerKlt = trackerKlt; this.detector = detector; detectedDesc = new FastQueue(10,detector.getDescriptionType(),false); knownDesc = new FastQueue(10,detector.getDescriptionType(),false); this.associate = associate; } /** * Used for unit tests */ protected CombinedTrackerScalePoint() { } /** * Sets the tracker into its initial state. Previously declared track data structures are saved * for re-use. */ public void reset() { dropAllTracks(); totalTracks = 0; } /** * Updates the location and description of tracks using KLT. Saves a reference * to the input image for future processing. * * @param input Input image. * @param pyramid Image pyramid of input. * @param derivX Derivative pyramid of input x-axis * @param derivY Derivative pyramid of input y-axis */ public void updateTracks( I input , PyramidDiscrete pyramid , D[] derivX, D[] derivY ) { // forget recently dropped or spawned tracks tracksSpawned.clear(); // save references this.input = input; trackerKlt.setInputs(pyramid, derivX, derivY); trackUsingKlt(tracksPureKlt); trackUsingKlt(tracksReactivated); } /** * Tracks features in the list using KLT and update their state */ private void trackUsingKlt(List> tracks) { for( int i = 0; i < tracks.size(); ) { CombinedTrack track = tracks.get(i); if( !trackerKlt.performTracking(track.track) ) { // handle the dropped track tracks.remove(i); tracksDormant.add(track); } else { track.set(track.track.x,track.track.y); i++; } } } /** * From the found interest points create new tracks. Tracks are only created at points * where there are no existing tracks. * * Note: Must be called after {@link #associateAllToDetected}. */ public void spawnTracksFromDetected() { // mark detected features with no matches as available FastQueue matches = associate.getMatches(); int N = detector.getNumberOfFeatures(); for( int i = 0; i < N; i++ ) associated[i] = false; for( AssociatedIndex i : matches.toList() ) { associated[i.dst] = true; } // spawn new tracks for unassociated detected features for( int i = 0; i < N; i++ ) { if( associated[i]) continue; Point2D_F64 p = detector.getLocation(i); TD d = detectedDesc.get(i); CombinedTrack track; if( tracksUnused.size() > 0 ) { track = tracksUnused.pop(); } else { track = new CombinedTrack(); track.desc = detector.createDescription(); track.track = trackerKlt.createNewTrack(); } // create the descriptor for tracking trackerKlt.setDescription((float)p.x,(float)p.y,track.track); // set track ID and location track.featureId = totalTracks++; track.desc.setTo(d); track.set(p); // update list of active tracks tracksPureKlt.add(track); tracksSpawned.add(track); } } /** * Associates pre-existing tracks to newly detected features * * @param known List of known tracks */ private void associateToDetected( List> known ) { // initialize data structures detectedDesc.reset(); knownDesc.reset(); // create a list of detected feature descriptions int N = detector.getNumberOfFeatures(); for( int i = 0; i < N; i++ ) { detectedDesc.add(detector.getDescription(i)); } // create a list of previously created track descriptions for( CombinedTrack t : known ) { knownDesc.add(t.desc); } // associate features associate.setSource(knownDesc); associate.setDestination(detectedDesc); associate.associate(); N = Math.max(known.size(),detector.getNumberOfFeatures()); if( associated.length < N ) associated = new boolean[N]; } /** * Associate all tracks in any state to the latest observations. If a dormant track is associated it * will be reactivated. If a reactivated track is associated it's state will be updated. PureKLT * tracks are left unmodified. */ public void associateAllToDetected() { // initialize data structures List> all = new ArrayList>(); all.addAll(tracksReactivated); all.addAll(tracksDormant); all.addAll(tracksPureKlt); int numTainted = tracksReactivated.size() + tracksDormant.size(); tracksReactivated.clear(); tracksDormant.clear(); // detect features detector.detect(input); // associate features associateToDetected(all); FastQueue matches = associate.getMatches(); // See which features got respawned and which ones are made dormant for( int i = 0; i < numTainted; i++ ) { associated[i] = false; } for( AssociatedIndex a : matches.toList() ) { // don't mess with pure-KLT tracks if( a.src >= numTainted ) continue; CombinedTrack t = all.get(a.src); t.set(detector.getLocation(a.dst)); trackerKlt.setDescription((float) t.x, (float) t.y, t.track); tracksReactivated.add(t); associated[a.src] = true; } for( int i = 0; i < numTainted; i++ ) { if( !associated[i] ) { tracksDormant.add(all.get(i)); } } } /** * Stops tracking the specified track and recycles its data. * * @param track The track being dropped * @return true if the track was being tracked and data was recycled false if not. */ public boolean dropTrack( CombinedTrack track ) { if( !tracksPureKlt.remove(track) ) if( !tracksReactivated.remove(track) ) if( !tracksDormant.remove(track) ) return false; tracksUnused.add(track); return true; } public List> getSpawned() { return tracksSpawned; } public List> getPureKlt() { return tracksPureKlt; } public List> getReactivated() { return tracksReactivated; } public List> getDormant() { return tracksDormant; } public PyramidKltForCombined getTrackerKlt() { return trackerKlt; } public DetectDescribePoint getDetector() { return detector; } /** * Drops all tracks and recycles the data */ public void dropAllTracks() { tracksUnused.addAll(tracksDormant); tracksUnused.addAll(tracksPureKlt); tracksUnused.addAll(tracksReactivated); tracksSpawned.clear(); tracksPureKlt.clear(); tracksReactivated.clear(); tracksSpawned.clear(); tracksDormant.clear(); } }