All Downloads are FREE. Search and download functionalities are using the official Maven repository.

boofcv.alg.background.stationary.BackgroundStationaryGaussian Maven / Gradle / Ivy

Go to download

BoofCV is an open source Java library for real-time computer vision and robotics applications.

There is a newer version: 0.26
Show newest version
/*
 * Copyright (c) 2011-2015, Peter Abeles. All Rights Reserved.
 *
 * This file is part of BoofCV (http://boofcv.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package boofcv.alg.background.stationary;

import boofcv.alg.background.BackgroundAlgorithmGaussian;
import boofcv.alg.background.BackgroundModelMoving;
import boofcv.alg.background.BackgroundModelStationary;
import boofcv.struct.image.ImageBase;
import boofcv.struct.image.ImageType;

/**
 * 

Implementation of {@link BackgroundAlgorithmGaussian} for moving images.

* * @see BackgroundAlgorithmGaussian * @see BackgroundModelMoving * * @author Peter Abeles */ public abstract class BackgroundStationaryGaussian extends BackgroundModelStationary implements BackgroundAlgorithmGaussian { /** * Specifies how fast it will adapt. 0 to 1, inclusive. 0 = static 1.0 = instant. */ protected float learnRate; /** * Threshold for classifying a pixel as background or not. This threshold is applied to the * computed Mahalanobis from the distribution. */ protected float threshold; /** * The initial variance assigned to a new pixel. Larger values to reduce false positives due to * under sampling */ protected float initialVariance = Float.MIN_VALUE; protected float minimumDifference = 0; /** * See class documentation for parameters definitions. * @param learnRate Specifies how quickly the background is updated Try 0.05 * @param threshold Threshold for background. ≥ 0. Try 10 * @param imageType Type of input image */ public BackgroundStationaryGaussian(float learnRate, float threshold,ImageType imageType) { super(imageType); if( threshold < 0 ) throw new IllegalArgumentException("Threshold must be more than 0"); this.learnRate = learnRate; this.threshold = threshold; } @Override public float getInitialVariance() { return initialVariance; } @Override public void setInitialVariance(float initialVariance) { this.initialVariance = initialVariance; } @Override public float getLearnRate() { return learnRate; } @Override public void setLearnRate(float learnRate) { this.learnRate = learnRate; } @Override public float getThreshold() { return threshold; } @Override public void setThreshold(float threshold) { this.threshold = threshold; } @Override public float getMinimumDifference() { return minimumDifference; } @Override public void setMinimumDifference(float minimumDifference) { this.minimumDifference = minimumDifference; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy