All Downloads are FREE. Search and download functionalities are using the official Maven repository.

boofcv.alg.flow.DenseOpticalFlowBlockPyramid Maven / Gradle / Ivy

Go to download

BoofCV is an open source Java library for real-time computer vision and robotics applications.

There is a newer version: 0.26
Show newest version
/*
 * Copyright (c) 2011-2016, Peter Abeles. All Rights Reserved.
 *
 * This file is part of BoofCV (http://boofcv.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package boofcv.alg.flow;

import boofcv.alg.InputSanityCheck;
import boofcv.core.image.GeneralizedImageOps;
import boofcv.struct.flow.ImageFlow;
import boofcv.struct.image.GrayF32;
import boofcv.struct.image.GrayU8;
import boofcv.struct.image.ImageGray;
import boofcv.struct.pyramid.ImagePyramid;

import java.util.Arrays;

/**
 * 

* Computes dense optical flow optical using pyramidal approach with square regions and a locally exhaustive search. * Flow estimates from higher layers in the pyramid are used to provide an initial estimate flow lower layers. * For each pixel in the 'prev' image, a square region centered around it is compared against * all other regions within the specified search radius of it * in image 'curr'. For each candidate flow the error is computed. After the best score has been found each local * pixel which contributed to that square region is checked. When a pixel is checked its current score compared * to see if it's better than the score it was previously assigned (if any) then its flow and score will be set to * the current. This improves the handled along object edges. If only the flow is considered when a pixel is the * center then it almost always fails at edges. *

* *

* When scoring hypotheses for optical flow and there is a tie, select the hypothesis with the least amount of motion. * This only really comes into play when there is absolutely no texture in real-world data. *

* *

* By checking all pixels associated with the score and not just the center one to see if it has a better * score the edges of objects is handled better. *

* * @author Peter Abeles */ public abstract class DenseOpticalFlowBlockPyramid { // the maximum displacement it will search protected int searchRadius; // radius of the square region it is searching with protected int regionRadius; // storage for the region in 'prev' protected T template; // maximum allowed error between two regions for it to be a valid flow protected int maxError; // flow in the previous layer protected ImageFlow flowPrevLayer = new ImageFlow(1,1); // flow in the current layer protected ImageFlow flowCurrLayer = new ImageFlow(1,1); protected ImageFlow.D tmp = new ImageFlow.D(); // fit score for each pixel protected float scores[] = new float[0]; /** * Configures the search. * * @param searchRadius Determines the size of the area search for matches. area = (2*r + 1)^2 * @param regionRadius Radius of the square region * @param maxPerPixelError Maximum error allowed per pixel. * @param imageType Type of image which is being processed. */ public DenseOpticalFlowBlockPyramid(int searchRadius, int regionRadius, int maxPerPixelError, Class imageType) { this.searchRadius = searchRadius; this.regionRadius = regionRadius; int w = regionRadius*2+1; maxError = maxPerPixelError*w*w; template = GeneralizedImageOps.createSingleBand(imageType,w, w); } /** * Computes the optical flow form 'prev' to 'curr' and stores the output into output * @param pyramidPrev Previous image * @param pyramidCurr Current image */ public void process( ImagePyramid pyramidPrev , ImagePyramid pyramidCurr ) { InputSanityCheck.checkSameShape(pyramidPrev, pyramidCurr); int numLayers = pyramidPrev.getNumLayers(); for( int i = numLayers-1; i >= 0; i-- ) { T prev = pyramidPrev.getLayer(i); T curr = pyramidCurr.getLayer(i); flowCurrLayer.reshape(prev.width, prev.height); int N = prev.width*prev.height; if( scores.length < N ) scores = new float[N]; // mark all the scores as being very large so that if it has not been processed its score // will be set inside of checkNeighbors. Arrays.fill(scores,0,N,Float.MAX_VALUE); int x1 = prev.width-regionRadius; int y1 = prev.height-regionRadius; if( i == numLayers-1 ) { // the top most layer in the pyramid has no hint for( int y = regionRadius; y < y1; y++ ) { for( int x = regionRadius; x < x1; x++ ) { extractTemplate(x,y,prev); float score = findFlow(x,y,curr,tmp); if( tmp.isValid() ) checkNeighbors(x,y,tmp, flowCurrLayer,score); else flowCurrLayer.unsafe_get(x, y).markInvalid(); } } } else { // for all the other layers use the hint of the previous layer to start its search double scale = pyramidPrev.getScale(i+1)/pyramidPrev.getScale(i); for( int y = regionRadius; y < y1; y++ ) { for( int x = regionRadius; x < x1; x++ ) { // grab the flow in higher level pyramid ImageFlow.D p = flowPrevLayer.get((int)(x/scale),(int)(y/scale)); if( !p.isValid() ) continue; // get the template around the current point in this layer extractTemplate(x,y,prev); // add the flow from the higher layer (adjusting for scale and rounding) as the start of // this search int deltaX = (int)(p.x*scale+0.5); int deltaY = (int)(p.y*scale+0.5); int startX = x + deltaX; int startY = y + deltaY; float score = findFlow(startX,startY,curr,tmp); // find flow only does it relative to the starting point tmp.x += deltaX; tmp.y += deltaY; if( tmp.isValid() ) checkNeighbors(x,y,tmp, flowCurrLayer,score); else flowCurrLayer.unsafe_get(x,y).markInvalid(); } } } // swap the flow images ImageFlow tmp = flowPrevLayer; flowPrevLayer = flowCurrLayer; flowCurrLayer = tmp; } } /** * Performs an exhaustive search centered around (cx,cy) for the region in 'curr' which is the best * match for the template. Results are written into 'flow' */ protected float findFlow( int cx , int cy , T curr , ImageFlow.D flow ) { float bestScore = Float.MAX_VALUE; int bestFlowX=0,bestFlowY=0; // ensure the search region is contained entirely inside the image int startY = cy-searchRadius-regionRadius < 0 ? Math.max(regionRadius - cy, 0) : -searchRadius; int startX = cx-searchRadius-regionRadius < 0 ? Math.max(regionRadius-cx,0) : -searchRadius; int endY = cy+searchRadius+regionRadius >= curr.height ? curr.height-cy-regionRadius-1 : searchRadius; int endX = cx+searchRadius+regionRadius >= curr.width ? curr.width-cx-regionRadius-1 : searchRadius; // search around the template's center for( int i = startY; i <= endY; i++ ) { int y = cy+i; for( int j = startX; j <= endX; j++ ) { int x = cx+j; float error = computeError(x,y,curr); if( error < bestScore ) { bestScore = error; bestFlowX = j; bestFlowY = i; } else if ( error == bestScore ) { // Pick solution with the least motion when ambiguous float m0 = j*j + i*i; float m1 = bestFlowX*bestFlowX + bestFlowY*bestFlowY; if( m0 < m1 ) { bestFlowX = j; bestFlowY = i; } } } } if( bestScore <= maxError ) { flow.x = bestFlowX; flow.y = bestFlowY; return bestScore; } else { flow.markInvalid(); return Float.NaN; } } /** * Examines every pixel inside the region centered at (cx,cy) to see if their optical flow has a worse * score the one specified in 'flow' */ protected void checkNeighbors( int cx , int cy , ImageFlow.D flow , ImageFlow image , float score ) { for( int i = -regionRadius; i <= regionRadius; i++ ) { int index = image.width*(cy+i) + (cx-regionRadius); for( int j = -regionRadius; j <= regionRadius; j++ , index++ ) { float s = scores[ index ]; ImageFlow.D f = image.data[index]; if( s > score ) { f.set(flow); scores[index] = score; } else if( s == score ) { // Pick solution with the least motion when ambiguous float m0 = f.x*f.x + f.y*f.y; float m1 = flow.x*flow.x + flow.y*flow.y; if( m1 < m0 ) { f.set(flow); scores[index] = score; } } } } } /** * Extracts a square template from the image 'prev' center at cx and cy */ protected abstract void extractTemplate( int cx , int cy , T prev ); /** * Computes the error between the template and a region in 'curr' centered at cx,cy */ protected abstract float computeError( int cx , int cy , T curr ); /** * Returns the found optical flow */ public ImageFlow getOpticalFlow() { return flowPrevLayer; } /** * Implementation for {@link GrayU8} */ public static class U8 extends DenseOpticalFlowBlockPyramid { public U8(int searchRadius, int regionRadius, int maxPerPixelError) { super(searchRadius, regionRadius, maxPerPixelError,GrayU8.class); } @Override protected void extractTemplate( int cx , int cy , GrayU8 prev ) { int index = 0; for( int i = -regionRadius; i <= regionRadius; i++ ) { int indexPrev = prev.startIndex + prev.stride*(i+cy) + cx-regionRadius; for( int j = -regionRadius; j <= regionRadius; j++ ) { template.data[index++] = prev.data[indexPrev++]; } } } @Override protected float computeError( int cx , int cy , GrayU8 curr ) { int index = 0; int error = 0; for( int i = -regionRadius; i <= regionRadius; i++ ) { int indexPrev = curr.startIndex + curr.stride*(i+cy) + cx-regionRadius; for( int j = -regionRadius; j <= regionRadius; j++ ) { int e = (template.data[index++]&0xFF) - (curr.data[indexPrev++]&0xFF); error += e < 0 ? -e : e; } } return error; } } /** * Implementation for {@link GrayF32} */ public static class F32 extends DenseOpticalFlowBlockPyramid { public F32(int searchRadius, int regionRadius, int maxPerPixelError) { super(searchRadius, regionRadius, maxPerPixelError,GrayF32.class); } @Override protected void extractTemplate( int cx , int cy , GrayF32 prev ) { int index = 0; for( int i = -regionRadius; i <= regionRadius; i++ ) { int indexPrev = prev.startIndex + prev.stride*(i+cy) + cx-regionRadius; for( int j = -regionRadius; j <= regionRadius; j++ ) { template.data[index++] = prev.data[indexPrev++]; } } } @Override protected float computeError( int cx , int cy , GrayF32 curr ) { int index = 0; float error = 0; for( int i = -regionRadius; i <= regionRadius; i++ ) { int indexPrev = curr.startIndex + curr.stride*(i+cy) + cx-regionRadius; for( int j = -regionRadius; j <= regionRadius; j++ ) { float e = template.data[index++] - curr.data[indexPrev++]; error += e < 0 ? -e : e; } } return error; } } public int getSearchRadius() { return searchRadius; } public int getRegionRadius() { return regionRadius; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy