All Downloads are FREE. Search and download functionalities are using the official Maven repository.

boofcv.alg.flow.HornSchunck Maven / Gradle / Ivy

Go to download

BoofCV is an open source Java library for real-time computer vision and robotics applications.

There is a newer version: 0.26
Show newest version
/*
 * Copyright (c) 2011-2014, Peter Abeles. All Rights Reserved.
 *
 * This file is part of BoofCV (http://boofcv.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package boofcv.alg.flow;

import boofcv.alg.InputSanityCheck;
import boofcv.struct.flow.ImageFlow;
import boofcv.struct.image.ImageBase;
import boofcv.struct.image.ImageType;

/**
 * 

* This is Horn-Schunck's well known work [1] for dense optical flow estimation. It is based off the following * equation Ex*u + Ey*v + Et = 0, where (u,v) is the estimated flow for a single pixel, and (Ex,Ey) is the pixel's * gradient and Et is the grave in intensity value. It is assumed that each pixel maintains a constant intensity * and that changes in flow are smooth. This implementation is faithful to the original * work and does not make any effort to improve its performance using more modern techniques. *

* *

* [1] Horn, Berthold K., and Brian G. Schunck. "Determining optical flow." * 1981 Technical Symposium East. International Society for Optics and Photonics, 1981. *

* * @author Peter Abeles */ public abstract class HornSchunck { // used to weight the error of image brightness and smoothness of velocity flow protected float alpha2; // Number of iterations protected int numIterations; // storage for the average flow protected ImageFlow averageFlow = new ImageFlow(1,1); // If the output should be cleared each time a new image is processed or used as an initial estimate protected boolean resetOutput = true; // storage for derivatives protected D derivX; protected D derivY; protected D derivT; /** * Constructor * * @param alpha Larger values place more importance on flow smoothness consistency over brightness consistency. Try 20 * @param numIterations Number of iterations. Try 1000 */ public HornSchunck(float alpha, int numIterations, ImageType derivType ) { this.alpha2 = alpha*alpha; this.numIterations = numIterations; derivX = derivType.createImage(1,1); derivY = derivType.createImage(1,1); derivT = derivType.createImage(1,1); } /** * changes the maximum number of iterations * @param numIterations maximum number of iterations */ public void setNumIterations(int numIterations) { this.numIterations = numIterations; } /** * Computes dense optical flow from the first image's gradient and the difference between * the second and the first image. * * @param image1 First image * @param image2 Second image * @param output Found dense optical flow */ public void process( T image1 , T image2 , ImageFlow output) { InputSanityCheck.checkSameShape(image1,image2); derivX.reshape(image1.width,image1.height); derivY.reshape(image1.width,image1.height); derivT.reshape(image1.width,image1.height); averageFlow.reshape(output.width,output.height); if( resetOutput ) output.fillZero(); computeDerivX(image1,image2,derivX); computeDerivY(image1,image2,derivY); computeDerivT(image1,image2,derivT); findFlow(derivX,derivY,derivT,output); } protected abstract void computeDerivX( T image1 , T image2 , D derivX ); protected abstract void computeDerivY( T image1 , T image2 , D derivY ); protected abstract void computeDerivT( T image1 , T image2 , D derivT ); /** * Inner function for computing optical flow */ protected abstract void findFlow( D derivX , D derivY , D derivT , ImageFlow output ); /** * Computes average flow using an 8-connect neighborhood for the inner image */ protected static void innerAverageFlow( ImageFlow flow , ImageFlow averageFlow ) { int endX = flow.width-1; int endY = flow.height-1; for( int y = 1; y < endY; y++ ) { int index = flow.width*y + 1; for( int x = 1; x < endX; x++ , index++) { ImageFlow.D average = averageFlow.data[index]; ImageFlow.D f0 = flow.data[index-1]; ImageFlow.D f1 = flow.data[index+1]; ImageFlow.D f2 = flow.data[index-flow.width]; ImageFlow.D f3 = flow.data[index+flow.width]; ImageFlow.D f4 = flow.data[index-1-flow.width]; ImageFlow.D f5 = flow.data[index+1-flow.width]; ImageFlow.D f6 = flow.data[index-1+flow.width]; ImageFlow.D f7 = flow.data[index+1+flow.width]; average.x = 0.1666667f*(f0.x + f1.x + f2.x + f3.x) + 0.08333333f*(f4.x + f5.x + f6.x + f7.x); average.y = 0.1666667f*(f0.y + f1.y + f2.y + f3.y) + 0.08333333f*(f4.y + f5.y + f6.y + f7.y); } } } /** * Computes average flow using an 8-connect neighborhood for the image border */ protected static void borderAverageFlow( ImageFlow flow , ImageFlow averageFlow) { for( int y = 0; y < flow.height; y++ ) { computeBorder(flow,averageFlow, 0, y); computeBorder(flow,averageFlow, flow.width-1, y); } for( int x = 1; x < flow.width-1; x++ ) { computeBorder(flow,averageFlow, x, 0); computeBorder(flow,averageFlow, x, flow.height-1); } } protected static void computeBorder(ImageFlow flow, ImageFlow averageFlow, int x, int y) { ImageFlow.D average = averageFlow.get(x,y); ImageFlow.D f0 = getExtend(flow, x-1,y); ImageFlow.D f1 = getExtend(flow, x+1,y); ImageFlow.D f2 = getExtend(flow, x,y-1); ImageFlow.D f3 = getExtend(flow, x,y+1); ImageFlow.D f4 = getExtend(flow, x-1,y-1); ImageFlow.D f5 = getExtend(flow, x+1,y-1); ImageFlow.D f6 = getExtend(flow, x-1,y+1); ImageFlow.D f7 = getExtend(flow, x+1,y+1); average.x = 0.1666667f*(f0.x + f1.x + f2.x + f3.x) + 0.08333333f*(f4.x + f5.x + f6.x + f7.x); average.y = 0.1666667f*(f0.y + f1.y + f2.y + f3.y) + 0.08333333f*(f4.y + f5.y + f6.y + f7.y); } protected static ImageFlow.D getExtend(ImageFlow flow, int x, int y) { if( x < 0 ) x = 0; else if( x >= flow.width ) x = flow.width-1; if( y < 0 ) y = 0; else if( y >= flow.height ) y = flow.height-1; return flow.unsafe_get(x,y); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy