boofcv.abst.geo.bundle.BundleAdjustmentCalibratedDense Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of geo Show documentation
Show all versions of geo Show documentation
BoofCV is an open source Java library for real-time computer vision and robotics applications.
/*
* Copyright (c) 2011-2013, Peter Abeles. All Rights Reserved.
*
* This file is part of BoofCV (http://boofcv.org).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package boofcv.abst.geo.bundle;
import boofcv.abst.geo.BundleAdjustmentCalibrated;
import boofcv.alg.geo.bundle.*;
import georegression.struct.se.Se3_F64;
import org.ddogleg.optimization.FactoryOptimization;
import org.ddogleg.optimization.RegionStepType;
import org.ddogleg.optimization.UnconstrainedLeastSquares;
import java.util.List;
/**
* Performs bundle adjustment using less efficient, but easier to implement dense matrices.
*
* @author Peter Abeles
*/
public class BundleAdjustmentCalibratedDense
implements BundleAdjustmentCalibrated
{
// converts to and from a parameterized version of the model
CalibPoseAndPointRodriguesCodec codec;
// storage for model parameters
double param[] = new double[0];
// minimization algorithm
UnconstrainedLeastSquares minimizer;
// computes residuals for least-squares
CalibPoseAndPointResiduals func = new CalibPoseAndPointResiduals();
CalibPoseAndPointRodriguesJacobian jacobian = new CalibPoseAndPointRodriguesJacobian();
int maxIterations;
double convergenceTol;
public BundleAdjustmentCalibratedDense(double convergenceTol,
int maxIterations ) {
this.convergenceTol = convergenceTol;
minimizer = FactoryOptimization.leastSquaresTrustRegion(1, RegionStepType.DOG_LEG_F,false);
codec = new CalibPoseAndPointRodriguesCodec();
this.maxIterations = maxIterations;
}
@Override
public boolean process(CalibratedPoseAndPoint initialModel,
List observations)
{
int numViews = initialModel.getNumViews();
int numPoints = initialModel.getNumPoints();
int numViewsUnknown = initialModel.getNumUnknownViews();
codec.configure(numViews,numPoints,numViewsUnknown,initialModel.getKnownArray());
if( param.length < codec.getParamLength() )
param = new double[ codec.getParamLength() ];
// TODO redesign to minimize memory creation
boolean known[] = initialModel.getKnownArray();
Se3_F64 extrinsic[] = new Se3_F64[initialModel.getNumViews()];
for( int i = 0; i < extrinsic.length; i++ ) {
if( known[i]) {
extrinsic[i] = new Se3_F64();
extrinsic[i].set( initialModel.getWorldToCamera(i));
}
}
codec.encode(initialModel,param);
func.configure(codec,initialModel,observations);
jacobian.configure(observations,initialModel.getNumPoints(),extrinsic);
minimizer.setFunction(func,jacobian);
minimizer.initialize(param, 0, convergenceTol * observations.size());
for( int i = 0; i < maxIterations; i++ ) {
if( minimizer.iterate() )
break;
}
codec.decode(minimizer.getParameters(), initialModel);
return true;
}
}