All Downloads are FREE. Search and download functionalities are using the official Maven repository.

boofcv.alg.geo.h.HomographyInducedStereo3Pts Maven / Gradle / Ivy

Go to download

BoofCV is an open source Java library for real-time computer vision and robotics applications.

There is a newer version: 0.26
Show newest version
/*
 * Copyright (c) 2011-2014, Peter Abeles. All Rights Reserved.
 *
 * This file is part of BoofCV (http://boofcv.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package boofcv.alg.geo.h;

import boofcv.alg.geo.MultiViewOps;
import boofcv.struct.geo.AssociatedPair;
import georegression.geometry.GeometryMath_F64;
import georegression.struct.point.Point2D_F64;
import georegression.struct.point.Point3D_F64;
import org.ejml.alg.dense.linsol.LinearSolverSafe;
import org.ejml.data.DenseMatrix64F;
import org.ejml.factory.LinearSolverFactory;
import org.ejml.interfaces.linsol.LinearSolver;

/**
 * 

* Computes the homography induced by a plane from 3 point correspondences. Works with both calibrated and * uncalibrated cameras. The Fundamental/Essential matrix must be known. The found homography will be from view 1 * to view 2. The passed in Fundamental matrix must have the following properties for each set of * point correspondences: x2*F*x1 = 0, where x1 and x2 are views of the point in image 1 and image 2 respectively. * For more information see [1]. *

* *

* [1] R. Hartley, and A. Zisserman, "Multiple View Geometry in Computer Vision", 2nd Ed, Cambridge 2003 *

* * @author Peter Abeles */ public class HomographyInducedStereo3Pts { // Epipole in camera 2 private Point3D_F64 e2 = new Point3D_F64(); // The found homography from view 1 to view 2 private DenseMatrix64F H = new DenseMatrix64F(3,3); // A = cross(e2)*F private DenseMatrix64F A = new DenseMatrix64F(3,3); // Rows filled with x from image 1 private DenseMatrix64F M = new DenseMatrix64F(3,3); private DenseMatrix64F temp0 = new DenseMatrix64F(3,1); private DenseMatrix64F temp1 = new DenseMatrix64F(3,1); private Point3D_F64 A_inv_b = new Point3D_F64(); private Point3D_F64 Ax = new Point3D_F64(); private Point3D_F64 b = new Point3D_F64(); private Point3D_F64 t0 = new Point3D_F64(); private Point3D_F64 t1 = new Point3D_F64(); private LinearSolver solver; // pick a reasonable scale and sign private AdjustHomographyMatrix adjust = new AdjustHomographyMatrix(); public HomographyInducedStereo3Pts() { // ensure that the inputs are not modified solver = new LinearSolverSafe(LinearSolverFactory.linear(3)); } /** * Specify the fundamental matrix and the camera 2 epipole. * * @param F Fundamental matrix. * @param e2 Epipole for camera 2. If null it will be computed internally. */ public void setFundamental( DenseMatrix64F F , Point3D_F64 e2 ) { if( e2 != null ) this.e2.set(e2); else { MultiViewOps.extractEpipoles(F,new Point3D_F64(),this.e2); } GeometryMath_F64.multCrossA(this.e2,F,A); } /** * Estimates the homography from view 1 to view 2 induced by a plane from 3 point associations. * Each pair must pass the epipolar constraint. This can fail if the points are colinear. * * @param p1 Associated point observation * @param p2 Associated point observation * @param p3 Associated point observation * @return True if successful or false if it failed */ public boolean process(AssociatedPair p1, AssociatedPair p2, AssociatedPair p3) { // Fill rows of M with observations from image 1 fillM(p1.p1,p2.p1,p3.p1); // Compute 'b' vector b.x = computeB(p1.p2); b.y = computeB(p2.p2); b.z = computeB(p3.p2); // A_inv_b = inv(A)*b if( !solver.setA(M) ) return false; GeometryMath_F64.toMatrix(b,temp0); solver.solve(temp0,temp1); GeometryMath_F64.toTuple3D(temp1, A_inv_b); GeometryMath_F64.addOuterProd(A, -1, e2, A_inv_b, H); // pick a good scale and sign for H adjust.adjust(H, p1); return true; } /** * Fill rows of M with observations from image 1 */ private void fillM( Point2D_F64 x1 , Point2D_F64 x2 , Point2D_F64 x3 ) { M.data[0] = x1.x; M.data[1] = x1.y; M.data[2] = 1; M.data[3] = x2.x; M.data[4] = x2.y; M.data[5] = 1; M.data[6] = x3.x; M.data[7] = x3.y; M.data[8] = 1; } /** * b = [(x cross (A*x))^T ( x cross e2 )] / || x cross e2 ||^2 */ private double computeB( Point2D_F64 x ) { GeometryMath_F64.mult(A,x,Ax); GeometryMath_F64.cross(x,Ax,t0); GeometryMath_F64.cross(x,e2,t1); double top = GeometryMath_F64.dot(t0,t1); double bottom = t1.normSq(); return top/bottom; } /** * The found homography from view 1 to view 2 * @return homography */ public DenseMatrix64F getHomography() { return H; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy