boofcv.abst.geo.pose.PnPRefineRodrigues Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of geo Show documentation
Show all versions of geo Show documentation
BoofCV is an open source Java library for real-time computer vision and robotics applications.
/*
* Copyright (c) 2011-2016, Peter Abeles. All Rights Reserved.
*
* This file is part of BoofCV (http://boofcv.org).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package boofcv.abst.geo.pose;
import boofcv.abst.geo.RefinePnP;
import boofcv.abst.geo.optimization.ResidualsCodecToMatrix;
import boofcv.alg.geo.pose.PnPJacobianRodrigues;
import boofcv.alg.geo.pose.PnPResidualReprojection;
import boofcv.alg.geo.pose.PnPRodriguesCodec;
import boofcv.struct.geo.Point2D3D;
import georegression.struct.se.Se3_F64;
import org.ddogleg.fitting.modelset.ModelCodec;
import org.ddogleg.optimization.FactoryOptimization;
import org.ddogleg.optimization.UnconstrainedLeastSquares;
import java.util.List;
/**
* Minimizes the projection residual error in a calibrated camera for a pose estimate.
* Rotation is encoded using rodrigues coordinates.
*
* @author Peter Abeles
*/
public class PnPRefineRodrigues implements RefinePnP {
ModelCodec paramModel = new PnPRodriguesCodec();
ResidualsCodecToMatrix func;
PnPJacobianRodrigues jacobian = new PnPJacobianRodrigues();
double param[];
UnconstrainedLeastSquares minimizer;
int maxIterations;
double convergenceTol;
public PnPRefineRodrigues(double convergenceTol, int maxIterations )
{
this.maxIterations = maxIterations;
this.convergenceTol = convergenceTol;
this.minimizer = FactoryOptimization.leastSquareLevenberg(1e-3);
func = new ResidualsCodecToMatrix<>(paramModel, new PnPResidualReprojection(), new Se3_F64());
param = new double[paramModel.getParamLength()];
}
@Override
public boolean fitModel(List obs, Se3_F64 worldToCamera, Se3_F64 refinedWorldToCamera) {
paramModel.encode(worldToCamera, param);
func.setObservations(obs);
jacobian.setObservations(obs);
minimizer.setFunction(func,jacobian);
minimizer.initialize(param,0,convergenceTol*obs.size());
boolean updated = false;
for( int i = 0; i < maxIterations; i++ ) {
boolean converged = minimizer.iterate();
if( converged || minimizer.isUpdated() ) {
// save the results
paramModel.decode(minimizer.getParameters(), refinedWorldToCamera);
updated = true;
}
if( converged ) {
if( i == 0 ) {
// if it converted on the first iteration then that means it already
// meet convergence. use input to avoid introduction of small numerical errors
refinedWorldToCamera.set(worldToCamera);
}
break;
}
}
return updated;
}
}