All Downloads are FREE. Search and download functionalities are using the official Maven repository.

boofcv.alg.transform.fft.GeneralPurposeFFT_F32_2D Maven / Gradle / Ivy

Go to download

BoofCV is an open source Java library for real-time computer vision and robotics applications.

There is a newer version: 0.26
Show newest version
/*
 * Copyright (c) 2011-2013, Peter Abeles. All Rights Reserved.
 *
 * This file is part of BoofCV (http://boofcv.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package boofcv.alg.transform.fft;

/**
 * 

* Computes 2D Discrete Fourier Transform (DFT) of complex and real, float * precision data. The size of the data can be an arbitrary number. The code originally comes from * General Purpose FFT Package written by Takuya Ooura * (http://www.kurims.kyoto-u.ac.jp/~ooura/fft.html). See below for the full history. *

* This code has a bit of a history. Originally from General Purpose FFT. Which was then ported into * JFFTPack written by Baoshe Zhang (http://jfftpack.sourceforge.net/), and then into JTransforms by Piotr Wendykier. * The major modification from JTransforms is that the SMP code has been stripped out. It might be added back in * once an SMP strategy has been finalized in BoofCV. *

*

* Code License: The original license of General Purpose FFT Package is shown below. This file will fall * under the same license: *

 * Copyright Takuya OOURA, 1996-2001
 *
 * You may use, copy, modify and distribute this code for any purpose (include commercial use) and without fee.
 * Please refer to this package when you modify this code.
 * 
*

* @author Piotr Wendykier ([email protected]) * @author Peter Abeles * */ public class GeneralPurposeFFT_F32_2D { private int rows; private int columns; private float[] t; private GeneralPurposeFFT_F32_1D fftColumns, fftRows; private boolean isPowerOfTwo = false; // local storage pre-declared private float[] temp; private float[][] temp2; /** * Creates new instance of DoubleFFT_2D. * * @param rows * number of rows * @param columns * number of columns */ public GeneralPurposeFFT_F32_2D(int rows, int columns) { if (rows < 1 || columns < 1 ) { throw new IllegalArgumentException("rows and columns must be greater than 0"); } this.rows = rows; this.columns = columns; if (DiscreteFourierTransformOps.isPowerOf2(rows) && DiscreteFourierTransformOps.isPowerOf2(columns)) { isPowerOfTwo = true; int oldNthreads = 1; int nt = 8 * oldNthreads * rows; if (2 * columns == 4 * oldNthreads) { nt >>= 1; } else if (2 * columns < 4 * oldNthreads) { nt >>= 2; } t = new float[nt]; } fftRows = new GeneralPurposeFFT_F32_1D(rows); if (rows == columns) { fftColumns = fftRows; } else { fftColumns = new GeneralPurposeFFT_F32_1D(columns); } temp = new float[2 * rows]; } /** * Computes 2D forward DFT of complex data leaving the result in * a. The data is stored in 1D array in row-major order. * Complex number is stored as two float values in sequence: the real and * imaginary part, i.e. the input array must be of size rows*2*columns. The * physical layout of the input data has to be as follows:
* *
	 * a[k1*2*columns+2*k2] = Re[k1][k2],
	 * a[k1*2*columns+2*k2+1] = Im[k1][k2], 0<=k1<rows, 0<=k2<columns,
	 * 
* * @param a * data to transform */ public void complexForward(final float[] a) { // handle special case if( rows == 1 || columns == 1 ) { if( rows > 1 ) fftRows.complexForward(a); else fftColumns.complexForward(a); return; } if (isPowerOfTwo) { int oldn2 = columns; columns = 2 * columns; for (int r = 0; r < rows; r++) { fftColumns.complexForward(a, r * columns); } cdft2d_sub(-1, a, true); columns = oldn2; } else { final int rowStride = 2 * columns; for (int r = 0; r < rows; r++) { fftColumns.complexForward(a, r * rowStride); } for (int c = 0; c < columns; c++) { int idx0 = 2 * c; for (int r = 0; r < rows; r++) { int idx1 = 2 * r; int idx2 = r * rowStride + idx0; temp[idx1] = a[idx2]; temp[idx1 + 1] = a[idx2 + 1]; } fftRows.complexForward(temp); for (int r = 0; r < rows; r++) { int idx1 = 2 * r; int idx2 = r * rowStride + idx0; a[idx2] = temp[idx1]; a[idx2 + 1] = temp[idx1 + 1]; } } } } /** * Computes 2D inverse DFT of complex data leaving the result in * a. The data is stored in 1D array in row-major order. * Complex number is stored as two float values in sequence: the real and * imaginary part, i.e. the input array must be of size rows*2*columns. The * physical layout of the input data has to be as follows:
* *
	 * a[k1*2*columns+2*k2] = Re[k1][k2],
	 * a[k1*2*columns+2*k2+1] = Im[k1][k2], 0<=k1<rows, 0<=k2<columns,
	 * 
* * @param a * data to transform * @param scale * if true then scaling is performed * */ public void complexInverse(final float[] a, final boolean scale) { // handle special case if( rows == 1 || columns == 1 ) { if( rows > 1 ) fftRows.complexInverse(a, scale); else fftColumns.complexInverse(a, scale); return; } if (isPowerOfTwo) { int oldn2 = columns; columns = 2 * columns; for (int r = 0; r < rows; r++) { fftColumns.complexInverse(a, r * columns, scale); } cdft2d_sub(1, a, scale); columns = oldn2; } else { final int rowspan = 2 * columns; for (int r = 0; r < rows; r++) { fftColumns.complexInverse(a, r * rowspan, scale); } for (int c = 0; c < columns; c++) { int idx1 = 2 * c; for (int r = 0; r < rows; r++) { int idx2 = 2 * r; int idx3 = r * rowspan + idx1; temp[idx2] = a[idx3]; temp[idx2 + 1] = a[idx3 + 1]; } fftRows.complexInverse(temp, scale); for (int r = 0; r < rows; r++) { int idx2 = 2 * r; int idx3 = r * rowspan + idx1; a[idx3] = temp[idx2]; a[idx3 + 1] = temp[idx2 + 1]; } } } } /** * Computes 2D forward DFT of real data leaving the result in a * . This method only works when the sizes of both dimensions are * power-of-two numbers. The physical layout of the output data is as * follows: * *
	 * a[k1*columns+2*k2] = Re[k1][k2] = Re[rows-k1][columns-k2],
	 * a[k1*columns+2*k2+1] = Im[k1][k2] = -Im[rows-k1][columns-k2],
	 *       0<k1<rows, 0<k2<columns/2,
	 * a[2*k2] = Re[0][k2] = Re[0][columns-k2],
	 * a[2*k2+1] = Im[0][k2] = -Im[0][columns-k2],
	 *       0<k2<columns/2,
	 * a[k1*columns] = Re[k1][0] = Re[rows-k1][0],
	 * a[k1*columns+1] = Im[k1][0] = -Im[rows-k1][0],
	 * a[(rows-k1)*columns+1] = Re[k1][columns/2] = Re[rows-k1][columns/2],
	 * a[(rows-k1)*columns] = -Im[k1][columns/2] = Im[rows-k1][columns/2],
	 *       0<k1<rows/2,
	 * a[0] = Re[0][0],
	 * a[1] = Re[0][columns/2],
	 * a[(rows/2)*columns] = Re[rows/2][0],
	 * a[(rows/2)*columns+1] = Re[rows/2][columns/2]
	 * 
* * This method computes only half of the elements of the real transform. The * other half satisfies the symmetry condition. If you want the full real * forward transform, use realForwardFull. To get back the * original data, use realInverse on the output of this method. * * @param a * data to transform */ public void realForward(float[] a) { if (isPowerOfTwo == false) { throw new IllegalArgumentException("rows and columns must be power of two numbers"); } else { for (int r = 0; r < rows; r++) { fftColumns.realForward(a, r * columns); } cdft2d_sub(-1, a, true); rdft2d_sub(1, a); } } /** * Computes 2D forward DFT of real data leaving the result in a * . This method computes full real forward transform, i.e. you will get the * same result as from complexForward called with all imaginary * part equal 0. Because the result is stored in a, the input * array must be of size rows*2*columns, with only the first rows*columns * elements filled with real data. To get back the original data, use * complexInverse on the output of this method. * * @param a * data to transform */ public void realForwardFull(float[] a) { // handle special case if( rows == 1 || columns == 1 ) { if( rows > 1 ) fftRows.realForwardFull(a); else fftColumns.realForwardFull(a); return; } if (isPowerOfTwo) { for (int r = 0; r < rows; r++) { fftColumns.realForward(a, r * columns); } cdft2d_sub(-1, a, true); rdft2d_sub(1, a); fillSymmetric(a); } else { declareRadixRealData(); mixedRadixRealForwardFull(a); } } /** * Computes 2D inverse DFT of real data leaving the result in a * . This method only works when the sizes of both dimensions are * power-of-two numbers. The physical layout of the input data has to be as * follows: * *
	 * a[k1*columns+2*k2] = Re[k1][k2] = Re[rows-k1][columns-k2],
	 * a[k1*columns+2*k2+1] = Im[k1][k2] = -Im[rows-k1][columns-k2],
	 *       0<k1<rows, 0<k2<columns/2,
	 * a[2*k2] = Re[0][k2] = Re[0][columns-k2],
	 * a[2*k2+1] = Im[0][k2] = -Im[0][columns-k2],
	 *       0<k2<columns/2,
	 * a[k1*columns] = Re[k1][0] = Re[rows-k1][0],
	 * a[k1*columns+1] = Im[k1][0] = -Im[rows-k1][0],
	 * a[(rows-k1)*columns+1] = Re[k1][columns/2] = Re[rows-k1][columns/2],
	 * a[(rows-k1)*columns] = -Im[k1][columns/2] = Im[rows-k1][columns/2],
	 *       0<k1<rows/2,
	 * a[0] = Re[0][0],
	 * a[1] = Re[0][columns/2],
	 * a[(rows/2)*columns] = Re[rows/2][0],
	 * a[(rows/2)*columns+1] = Re[rows/2][columns/2]
	 * 
* * This method computes only half of the elements of the real transform. The * other half satisfies the symmetry condition. If you want the full real * inverse transform, use realInverseFull. * * @param a * data to transform * * @param scale * if true then scaling is performed */ public void realInverse(float[] a, boolean scale) { // handle special case if( rows == 1 || columns == 1 ) { if( rows > 1 ) fftRows.realInverse(a, scale); else fftColumns.realInverse(a, scale); return; } if (isPowerOfTwo == false) { throw new IllegalArgumentException("rows and columns must be power of two numbers"); } else { rdft2d_sub(-1, a); cdft2d_sub(1, a, scale); for (int r = 0; r < rows; r++) { fftColumns.realInverse(a, r * columns, scale); } } } /** * Computes 2D inverse DFT of real data leaving the result in a * . This method computes full real inverse transform, i.e. you will get the * same result as from complexInverse called with all imaginary * part equal 0. Because the result is stored in a, the input * array must be of size rows*2*columns, with only the first rows*columns * elements filled with real data. * * @param a * data to transform * * @param scale * if true then scaling is performed */ public void realInverseFull(float[] a, boolean scale) { // handle special case if( rows == 1 || columns == 1 ) { if( rows > 1 ) fftRows.realInverseFull(a, scale); else fftColumns.realInverseFull(a, scale); return; } if (isPowerOfTwo) { for (int r = 0; r < rows; r++) { fftColumns.realInverse2(a, r * columns, scale); } cdft2d_sub(1, a, scale); rdft2d_sub(1, a); fillSymmetric(a); } else { declareRadixRealData(); mixedRadixRealInverseFull(a, scale); } } private void declareRadixRealData() { if( temp2 == null ) { final int n2d2 = columns / 2 + 1; temp2 = new float[n2d2][2 * rows]; } } private void mixedRadixRealForwardFull(final float[] a) { final int rowStride = 2 * columns; final int n2d2 = columns / 2 + 1; final float[][] temp = temp2; for (int r = 0; r < rows; r++) { fftColumns.realForward(a, r * columns); } for (int r = 0; r < rows; r++) { temp[0][r] = a[r * columns]; //first column is always real } fftRows.realForwardFull(temp[0]); for (int c = 1; c < n2d2 - 1; c++) { int idx0 = 2 * c; for (int r = 0; r < rows; r++) { int idx1 = 2 * r; int idx2 = r * columns + idx0; temp[c][idx1] = a[idx2]; temp[c][idx1 + 1] = a[idx2 + 1]; } fftRows.complexForward(temp[c]); } if ((columns % 2) == 0) { for (int r = 0; r < rows; r++) { temp[n2d2 - 1][r] = a[r * columns + 1]; //imaginary part = 0; } fftRows.realForwardFull(temp[n2d2 - 1]); } else { for (int r = 0; r < rows; r++) { int idx1 = 2 * r; int idx2 = r * columns; int idx3 = n2d2 - 1; temp[idx3][idx1] = a[idx2 + 2 * idx3]; temp[idx3][idx1 + 1] = a[idx2 + 1]; } fftRows.complexForward(temp[n2d2 - 1]); } for (int r = 0; r < rows; r++) { int idx1 = 2 * r; for (int c = 0; c < n2d2; c++) { int idx0 = 2 * c; int idx2 = r * rowStride + idx0; a[idx2] = temp[c][idx1]; a[idx2 + 1] = temp[c][idx1 + 1]; } } //fill symmetric for (int r = 1; r < rows; r++) { int idx5 = r * rowStride; int idx6 = (rows - r + 1) * rowStride; for (int c = n2d2; c < columns; c++) { int idx1 = 2 * c; int idx2 = 2 * (columns - c); a[idx1] = a[idx2]; a[idx1 + 1] = -a[idx2 + 1]; int idx3 = idx5 + idx1; int idx4 = idx6 - idx1; a[idx3] = a[idx4]; a[idx3 + 1] = -a[idx4 + 1]; } } } private void mixedRadixRealInverseFull(final float[] a, final boolean scale) { final int rowStride = 2 * columns; final int n2d2 = columns / 2 + 1; final float[][] temp = temp2; for (int r = 0; r < rows; r++) { fftColumns.realInverse2(a, r * columns, scale); } for (int r = 0; r < rows; r++) { temp[0][r] = a[r * columns]; //first column is always real } fftRows.realInverseFull(temp[0], scale); for (int c = 1; c < n2d2 - 1; c++) { int idx0 = 2 * c; for (int r = 0; r < rows; r++) { int idx1 = 2 * r; int idx2 = r * columns + idx0; temp[c][idx1] = a[idx2]; temp[c][idx1 + 1] = a[idx2 + 1]; } fftRows.complexInverse(temp[c], scale); } if ((columns % 2) == 0) { for (int r = 0; r < rows; r++) { temp[n2d2 - 1][r] = a[r * columns + 1]; //imaginary part = 0; } fftRows.realInverseFull(temp[n2d2 - 1], scale); } else { for (int r = 0; r < rows; r++) { int idx1 = 2 * r; int idx2 = r * columns; int idx3 = n2d2 - 1; temp[idx3][idx1] = a[idx2 + 2 * idx3]; temp[idx3][idx1 + 1] = a[idx2 + 1]; } fftRows.complexInverse(temp[n2d2 - 1], scale); } for (int r = 0; r < rows; r++) { int idx1 = 2 * r; for (int c = 0; c < n2d2; c++) { int idx0 = 2 * c; int idx2 = r * rowStride + idx0; a[idx2] = temp[c][idx1]; a[idx2 + 1] = temp[c][idx1 + 1]; } } //fill symmetric for (int r = 1; r < rows; r++) { int idx5 = r * rowStride; int idx6 = (rows - r + 1) * rowStride; for (int c = n2d2; c < columns; c++) { int idx1 = 2 * c; int idx2 = 2 * (columns - c); a[idx1] = a[idx2]; a[idx1 + 1] = -a[idx2 + 1]; int idx3 = idx5 + idx1; int idx4 = idx6 - idx1; a[idx3] = a[idx4]; a[idx3 + 1] = -a[idx4 + 1]; } } } private void rdft2d_sub(int isgn, float[] a) { int n1h, j; float xi; int idx1, idx2; n1h = rows >> 1; if (isgn < 0) { for (int i = 1; i < n1h; i++) { j = rows - i; idx1 = i * columns; idx2 = j * columns; xi = a[idx1] - a[idx2]; a[idx1] += a[idx2]; a[idx2] = xi; xi = a[idx2 + 1] - a[idx1 + 1]; a[idx1 + 1] += a[idx2 + 1]; a[idx2 + 1] = xi; } } else { for (int i = 1; i < n1h; i++) { j = rows - i; idx1 = i * columns; idx2 = j * columns; a[idx2] = 0.5f * (a[idx1] - a[idx2]); a[idx1] -= a[idx2]; a[idx2 + 1] = 0.5f * (a[idx1 + 1] + a[idx2 + 1]); a[idx1 + 1] -= a[idx2 + 1]; } } } private void cdft2d_sub(int isgn, float[] a, boolean scale) { int idx1, idx2, idx3, idx4, idx5; if (isgn == -1) { if (columns > 4) { for (int c = 0; c < columns; c += 8) { for (int r = 0; r < rows; r++) { idx1 = r * columns + c; idx2 = 2 * r; idx3 = 2 * rows + 2 * r; idx4 = idx3 + 2 * rows; idx5 = idx4 + 2 * rows; t[idx2] = a[idx1]; t[idx2 + 1] = a[idx1 + 1]; t[idx3] = a[idx1 + 2]; t[idx3 + 1] = a[idx1 + 3]; t[idx4] = a[idx1 + 4]; t[idx4 + 1] = a[idx1 + 5]; t[idx5] = a[idx1 + 6]; t[idx5 + 1] = a[idx1 + 7]; } fftRows.complexForward(t, 0); fftRows.complexForward(t, 2 * rows); fftRows.complexForward(t, 4 * rows); fftRows.complexForward(t, 6 * rows); for (int r = 0; r < rows; r++) { idx1 = r * columns + c; idx2 = 2 * r; idx3 = 2 * rows + 2 * r; idx4 = idx3 + 2 * rows; idx5 = idx4 + 2 * rows; a[idx1] = t[idx2]; a[idx1 + 1] = t[idx2 + 1]; a[idx1 + 2] = t[idx3]; a[idx1 + 3] = t[idx3 + 1]; a[idx1 + 4] = t[idx4]; a[idx1 + 5] = t[idx4 + 1]; a[idx1 + 6] = t[idx5]; a[idx1 + 7] = t[idx5 + 1]; } } } else if (columns == 4) { for (int r = 0; r < rows; r++) { idx1 = r * columns; idx2 = 2 * r; idx3 = 2 * rows + 2 * r; t[idx2] = a[idx1]; t[idx2 + 1] = a[idx1 + 1]; t[idx3] = a[idx1 + 2]; t[idx3 + 1] = a[idx1 + 3]; } fftRows.complexForward(t, 0); fftRows.complexForward(t, 2 * rows); for (int r = 0; r < rows; r++) { idx1 = r * columns; idx2 = 2 * r; idx3 = 2 * rows + 2 * r; a[idx1] = t[idx2]; a[idx1 + 1] = t[idx2 + 1]; a[idx1 + 2] = t[idx3]; a[idx1 + 3] = t[idx3 + 1]; } } else if (columns == 2) { for (int r = 0; r < rows; r++) { idx1 = r * columns; idx2 = 2 * r; t[idx2] = a[idx1]; t[idx2 + 1] = a[idx1 + 1]; } fftRows.complexForward(t, 0); for (int r = 0; r < rows; r++) { idx1 = r * columns; idx2 = 2 * r; a[idx1] = t[idx2]; a[idx1 + 1] = t[idx2 + 1]; } } } else { if (columns > 4) { for (int c = 0; c < columns; c += 8) { for (int r = 0; r < rows; r++) { idx1 = r * columns + c; idx2 = 2 * r; idx3 = 2 * rows + 2 * r; idx4 = idx3 + 2 * rows; idx5 = idx4 + 2 * rows; t[idx2] = a[idx1]; t[idx2 + 1] = a[idx1 + 1]; t[idx3] = a[idx1 + 2]; t[idx3 + 1] = a[idx1 + 3]; t[idx4] = a[idx1 + 4]; t[idx4 + 1] = a[idx1 + 5]; t[idx5] = a[idx1 + 6]; t[idx5 + 1] = a[idx1 + 7]; } fftRows.complexInverse(t, 0, scale); fftRows.complexInverse(t, 2 * rows, scale); fftRows.complexInverse(t, 4 * rows, scale); fftRows.complexInverse(t, 6 * rows, scale); for (int r = 0; r < rows; r++) { idx1 = r * columns + c; idx2 = 2 * r; idx3 = 2 * rows + 2 * r; idx4 = idx3 + 2 * rows; idx5 = idx4 + 2 * rows; a[idx1] = t[idx2]; a[idx1 + 1] = t[idx2 + 1]; a[idx1 + 2] = t[idx3]; a[idx1 + 3] = t[idx3 + 1]; a[idx1 + 4] = t[idx4]; a[idx1 + 5] = t[idx4 + 1]; a[idx1 + 6] = t[idx5]; a[idx1 + 7] = t[idx5 + 1]; } } } else if (columns == 4) { for (int r = 0; r < rows; r++) { idx1 = r * columns; idx2 = 2 * r; idx3 = 2 * rows + 2 * r; t[idx2] = a[idx1]; t[idx2 + 1] = a[idx1 + 1]; t[idx3] = a[idx1 + 2]; t[idx3 + 1] = a[idx1 + 3]; } fftRows.complexInverse(t, 0, scale); fftRows.complexInverse(t, 2 * rows, scale); for (int r = 0; r < rows; r++) { idx1 = r * columns; idx2 = 2 * r; idx3 = 2 * rows + 2 * r; a[idx1] = t[idx2]; a[idx1 + 1] = t[idx2 + 1]; a[idx1 + 2] = t[idx3]; a[idx1 + 3] = t[idx3 + 1]; } } else if (columns == 2) { for (int r = 0; r < rows; r++) { idx1 = r * columns; idx2 = 2 * r; t[idx2] = a[idx1]; t[idx2 + 1] = a[idx1 + 1]; } fftRows.complexInverse(t, 0, scale); for (int r = 0; r < rows; r++) { idx1 = r * columns; idx2 = 2 * r; a[idx1] = t[idx2]; a[idx1 + 1] = t[idx2 + 1]; } } } } private void cdft2d_sub(int isgn, float[][] a, boolean scale) { int idx2, idx3, idx4, idx5; if (isgn == -1) { if (columns > 4) { for (int c = 0; c < columns; c += 8) { for (int r = 0; r < rows; r++) { idx2 = 2 * r; idx3 = 2 * rows + 2 * r; idx4 = idx3 + 2 * rows; idx5 = idx4 + 2 * rows; t[idx2] = a[r][c]; t[idx2 + 1] = a[r][c + 1]; t[idx3] = a[r][c + 2]; t[idx3 + 1] = a[r][c + 3]; t[idx4] = a[r][c + 4]; t[idx4 + 1] = a[r][c + 5]; t[idx5] = a[r][c + 6]; t[idx5 + 1] = a[r][c + 7]; } fftRows.complexForward(t, 0); fftRows.complexForward(t, 2 * rows); fftRows.complexForward(t, 4 * rows); fftRows.complexForward(t, 6 * rows); for (int r = 0; r < rows; r++) { idx2 = 2 * r; idx3 = 2 * rows + 2 * r; idx4 = idx3 + 2 * rows; idx5 = idx4 + 2 * rows; a[r][c] = t[idx2]; a[r][c + 1] = t[idx2 + 1]; a[r][c + 2] = t[idx3]; a[r][c + 3] = t[idx3 + 1]; a[r][c + 4] = t[idx4]; a[r][c + 5] = t[idx4 + 1]; a[r][c + 6] = t[idx5]; a[r][c + 7] = t[idx5 + 1]; } } } else if (columns == 4) { for (int r = 0; r < rows; r++) { idx2 = 2 * r; idx3 = 2 * rows + 2 * r; t[idx2] = a[r][0]; t[idx2 + 1] = a[r][1]; t[idx3] = a[r][2]; t[idx3 + 1] = a[r][3]; } fftRows.complexForward(t, 0); fftRows.complexForward(t, 2 * rows); for (int r = 0; r < rows; r++) { idx2 = 2 * r; idx3 = 2 * rows + 2 * r; a[r][0] = t[idx2]; a[r][1] = t[idx2 + 1]; a[r][2] = t[idx3]; a[r][3] = t[idx3 + 1]; } } else if (columns == 2) { for (int r = 0; r < rows; r++) { idx2 = 2 * r; t[idx2] = a[r][0]; t[idx2 + 1] = a[r][1]; } fftRows.complexForward(t, 0); for (int r = 0; r < rows; r++) { idx2 = 2 * r; a[r][0] = t[idx2]; a[r][1] = t[idx2 + 1]; } } } else { if (columns > 4) { for (int c = 0; c < columns; c += 8) { for (int r = 0; r < rows; r++) { idx2 = 2 * r; idx3 = 2 * rows + 2 * r; idx4 = idx3 + 2 * rows; idx5 = idx4 + 2 * rows; t[idx2] = a[r][c]; t[idx2 + 1] = a[r][c + 1]; t[idx3] = a[r][c + 2]; t[idx3 + 1] = a[r][c + 3]; t[idx4] = a[r][c + 4]; t[idx4 + 1] = a[r][c + 5]; t[idx5] = a[r][c + 6]; t[idx5 + 1] = a[r][c + 7]; } fftRows.complexInverse(t, 0, scale); fftRows.complexInverse(t, 2 * rows, scale); fftRows.complexInverse(t, 4 * rows, scale); fftRows.complexInverse(t, 6 * rows, scale); for (int r = 0; r < rows; r++) { idx2 = 2 * r; idx3 = 2 * rows + 2 * r; idx4 = idx3 + 2 * rows; idx5 = idx4 + 2 * rows; a[r][c] = t[idx2]; a[r][c + 1] = t[idx2 + 1]; a[r][c + 2] = t[idx3]; a[r][c + 3] = t[idx3 + 1]; a[r][c + 4] = t[idx4]; a[r][c + 5] = t[idx4 + 1]; a[r][c + 6] = t[idx5]; a[r][c + 7] = t[idx5 + 1]; } } } else if (columns == 4) { for (int r = 0; r < rows; r++) { idx2 = 2 * r; idx3 = 2 * rows + 2 * r; t[idx2] = a[r][0]; t[idx2 + 1] = a[r][1]; t[idx3] = a[r][2]; t[idx3 + 1] = a[r][3]; } fftRows.complexInverse(t, 0, scale); fftRows.complexInverse(t, 2 * rows, scale); for (int r = 0; r < rows; r++) { idx2 = 2 * r; idx3 = 2 * rows + 2 * r; a[r][0] = t[idx2]; a[r][1] = t[idx2 + 1]; a[r][2] = t[idx3]; a[r][3] = t[idx3 + 1]; } } else if (columns == 2) { for (int r = 0; r < rows; r++) { idx2 = 2 * r; t[idx2] = a[r][0]; t[idx2 + 1] = a[r][1]; } fftRows.complexInverse(t, 0, scale); for (int r = 0; r < rows; r++) { idx2 = 2 * r; a[r][0] = t[idx2]; a[r][1] = t[idx2 + 1]; } } } } private void fillSymmetric(final float[] a) { final int twon2 = 2 * columns; int idx1, idx2, idx3, idx4; int n1d2 = rows / 2; for (int r = (rows - 1); r >= 1; r--) { idx1 = r * columns; idx2 = 2 * idx1; for (int c = 0; c < columns; c += 2) { a[idx2 + c] = a[idx1 + c]; a[idx1 + c] = 0; a[idx2 + c + 1] = a[idx1 + c + 1]; a[idx1 + c + 1] = 0; } } for (int r = 1; r < n1d2; r++) { idx2 = r * twon2; idx3 = (rows - r) * twon2; a[idx2 + columns] = a[idx3 + 1]; a[idx2 + columns + 1] = -a[idx3]; } for (int r = 1; r < n1d2; r++) { idx2 = r * twon2; idx3 = (rows - r + 1) * twon2; for (int c = columns + 2; c < twon2; c += 2) { a[idx2 + c] = a[idx3 - c]; a[idx2 + c + 1] = -a[idx3 - c + 1]; } } for (int r = 0; r <= rows / 2; r++) { idx1 = r * twon2; idx4 = ((rows - r) % rows) * twon2; for (int c = 0; c < twon2; c += 2) { idx2 = idx1 + c; idx3 = idx4 + (twon2 - c) % twon2; a[idx3] = a[idx2]; a[idx3 + 1] = -a[idx2 + 1]; } } a[columns] = -a[1]; a[1] = 0; idx1 = n1d2 * twon2; a[idx1 + columns] = -a[idx1 + 1]; a[idx1 + 1] = 0; a[idx1 + columns + 1] = 0; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy