All Downloads are FREE. Search and download functionalities are using the official Maven repository.

boofcv.alg.transform.pyramid.PyramidFloatGaussianScale Maven / Gradle / Ivy

Go to download

BoofCV is an open source Java library for real-time computer vision and robotics applications.

There is a newer version: 0.26
Show newest version
/*
 * Copyright (c) 2011-2013, Peter Abeles. All Rights Reserved.
 *
 * This file is part of BoofCV (http://boofcv.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package boofcv.alg.transform.pyramid;

import boofcv.abst.filter.blur.BlurStorageFilter;
import boofcv.alg.distort.DistortImageOps;
import boofcv.alg.distort.PixelTransformAffine_F32;
import boofcv.alg.distort.impl.DistortSupport;
import boofcv.alg.interpolate.InterpolatePixelS;
import boofcv.factory.filter.blur.FactoryBlurFilter;
import boofcv.struct.image.ImageSingleBand;
import boofcv.struct.pyramid.PyramidFloat;


/**
 * 

* {@link PyramidFloat} in which each layer is constructed by 1) applying Gaussian blur to the previous layer, and then * 2) re-sampling the blurred previous layer. The scaling factor between each level are floating point number. * Unlike {@link PyramidDiscreteSampleBlur } the scale factors can be arbitrary and are not limited to certain integer * values. The specified sigmas are the sigmas which are applied to each layer. *

* *

* NOTE: This can be considered the theoretically correct way to construct an image pyramid * with no sacrifices to improve speed. *

* * @author Peter Abeles */ @SuppressWarnings({"unchecked"}) public class PyramidFloatGaussianScale< T extends ImageSingleBand> extends PyramidFloat { // interpolation algorithm protected InterpolatePixelS interpolate; // used to store the blurred image protected T tempImage; // how much each layer is blurred before sub-sampling protected float[] sigmaLayers; // The effective amount of blur in each pyramid layer relative to the input image protected double[] sigma; /** * Configures the pyramid * * @param interpolate Interpolation function used to sub-sample. * @param scales Scales of each layer in the pyramid relative to the input image * @param sigmaLayers Amount of blur applied to the previous layer while constructing the pyramid. * @param imageType Type of image it's processing */ public PyramidFloatGaussianScale(InterpolatePixelS interpolate, double scales[], double sigmaLayers[], Class imageType) { super(imageType, scales); if( scales.length != sigmaLayers.length ) throw new IllegalArgumentException("Number of scales and sigmas must be the same"); this.interpolate = interpolate; this.sigmaLayers = new float[ sigmaLayers.length ]; for( int i = 0; i < sigmaLayers.length; i++ ) this.sigmaLayers[i] = (float) sigmaLayers[i]; sigma = new double[ sigmaLayers.length ]; sigma[0] = sigmaLayers[0]; for( int i = 1; i < scales.length; i++ ) { // the effective blur sigma which is being applied double effectiveSigma = sigmaLayers[i]*scales[i-1]; sigma[i] = Math.sqrt(sigma[i-1]*sigma[i-1] + effectiveSigma*effectiveSigma); } } @Override public void process(T input) { super.initialize(input.width,input.height); if( isSaveOriginalReference() ) throw new IllegalArgumentException("The original reference cannot be saved"); if( tempImage == null ) { tempImage = (T)input._createNew(input.width,input.height); } for( int i = 0; i < scale.length; i++ ) { T prev = i == 0 ? input : getLayer(i-1); T layer = getLayer(i); // Apply the requested blur to the previous layer BlurStorageFilter blur = (BlurStorageFilter) FactoryBlurFilter.gaussian(layer.getClass(), sigmaLayers[i],-1); tempImage.reshape(prev.width,prev.height); blur.process(prev,tempImage); // Resample the blurred image if( scale[i] == 1 ) { layer.setTo(tempImage); } else { PixelTransformAffine_F32 model = DistortSupport.transformScale(layer,tempImage); DistortImageOps.distortSingle(tempImage,layer,model,null,interpolate); } } } public InterpolatePixelS getInterpolate() { return interpolate; } public void setInterpolate(InterpolatePixelS interpolate) { this.interpolate = interpolate; } @Override public double getSampleOffset(int layer) { return 0; } @Override public double getSigma(int layer) { return sigma[layer]; } public float[] getSigmaLayers() { return sigmaLayers; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy