boofcv.alg.denoise.wavelet.DenoiseBayesShrink_F32 Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of ip Show documentation
Show all versions of ip Show documentation
BoofCV is an open source Java library for real-time computer vision and robotics applications.
/*
* Copyright (c) 2011-2013, Peter Abeles. All Rights Reserved.
*
* This file is part of BoofCV (http://boofcv.org).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package boofcv.alg.denoise.wavelet;
import boofcv.alg.denoise.ShrinkThresholdRule;
import boofcv.alg.misc.ImageStatistics;
import boofcv.struct.image.ImageFloat32;
/**
*
* Denoises images using an adaptive soft-threshold in each sub-band computed using Bayesian statistics.
*
*
*
* Wavelet coefficients are modified using a standard soft-thresholding technique. The threshold
* is computing using an adaptively for each sub-band, as follows:
* T = σ2/σX
* where σ is the noise standard deviation and σX is the signal standard deviation.
*
*
*
* S. Change, B. Yu, M. Vetterli, "Adaptive Wavelet Thresholding for Image Denoising and Compression"
* IEEE Tran. Image Processing, Vol 9, No. 9, Sept. 2000
*
*
* @author Peter Abeles
*/
public class DenoiseBayesShrink_F32 extends SubbandShrink {
float noiseVariance;
public DenoiseBayesShrink_F32( ShrinkThresholdRule rule ) {
super(rule);
}
@Override
protected Number computeThreshold( ImageFloat32 subband )
{
// the maximum magnitude coefficient is used to normalize all the other coefficients
// and reduce numerical round-off error
float max = ImageStatistics.maxAbs(subband);
float varianceY = 0;
for( int y = 0; y < subband.height; y++ ) {
int index = subband.startIndex + subband.stride*y;
int end = index + subband.width;
for( ;index < end; index++ ) {
float v = subband.data[index]/max;
varianceY += v*v;
}
}
// undo normalization.
// these coefficients are modeled as being zero mean, so the variance can be computed this way
varianceY = (varianceY/(subband.width*subband.height))*max*max;
// signal standard deviation
float inner = varianceY-noiseVariance;
if( inner < 0 )
return Float.POSITIVE_INFINITY;
else
return noiseVariance/(float)Math.sqrt(inner);
}
@Override
public void denoise( ImageFloat32 transform , int numLevels ) {
int w = transform.width;
int h = transform.height;
// compute the noise variance using the HH_1 subband
noiseVariance = UtilDenoiseWavelet.estimateNoiseStdDev(transform.subimage(w/2,h/2,w,h, null),null);
noiseVariance *= noiseVariance;
// System.out.println("Noise Variance: "+noiseVariance);
performShrinkage(transform,numLevels);
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy