boofcv.alg.transform.pyramid.PyramidOps Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of ip Show documentation
Show all versions of ip Show documentation
BoofCV is an open source Java library for real-time computer vision and robotics applications.
/*
* Copyright (c) 2011-2015, Peter Abeles. All Rights Reserved.
*
* This file is part of BoofCV (http://boofcv.org).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package boofcv.alg.transform.pyramid;
import boofcv.abst.filter.FilterImageInterface;
import boofcv.abst.filter.derivative.ImageGradient;
import boofcv.abst.filter.derivative.ImageHessian;
import boofcv.alg.interpolate.InterpolatePixelS;
import boofcv.alg.transform.pyramid.impl.ImplPyramidOps;
import boofcv.core.image.GeneralizedImageOps;
import boofcv.struct.image.ImageFloat32;
import boofcv.struct.image.ImageSingleBand;
import boofcv.struct.image.ImageUInt8;
import boofcv.struct.pyramid.ImagePyramid;
import java.lang.reflect.Array;
/**
* Various operations related to image pyramids.
*
* @author Peter Abeles
*/
public class PyramidOps {
/**
* Creates an array of single band images for each layer in the provided pyramid. Each image will
* be the same size as the corresponding layer in the pyramid.
*
* @param pyramid (Input) Image pyramid
* @param outputType (Input) Output image type
* @param Output image type
* @return An array of images
*/
public static
O[] declareOutput( ImagePyramid> pyramid , Class outputType ) {
O[] ret = (O[])Array.newInstance(outputType,pyramid.getNumLayers());
for( int i = 0; i < ret.length; i++ ) {
int w = pyramid.getWidth(i);
int h = pyramid.getHeight(i);
ret[i] = GeneralizedImageOps.createSingleBand(outputType,w,h);
}
return ret;
}
/**
* Reshapes each image in the array to match the layers in the pyramid
* @param pyramid (Input) Image pyramid
* @param output (Output) List of images which is to be resized
* @param Image type
*/
public static
void reshapeOutput( ImagePyramid> pyramid , O[] output ) {
for( int i = 0; i < output.length; i++ ) {
int w = pyramid.getWidth(i);
int h = pyramid.getHeight(i);
output[i].reshape(w, h);
}
}
/**
*
* Runs an image filter through each layer in the pyramid.
*
*
*
* It is assumed that the output has the same scales as the input. If not
* initialized then it will be initialized. If already initialized it is
* assumed to be setup for the same input image size.
*
*
* @param input Input pyramid.
* @param filter Filter being applied to the pyramid.
* @param output Output pyramid where filter results are saved.
*/
public static
void filter(ImagePyramid input, FilterImageInterface filter, O[] output )
{
for( int i = 0; i < input.getNumLayers(); i++ ) {
I imageIn = input.getLayer(i);
filter.process(imageIn,output[i]);
}
}
/**
*
* Computes the gradient for each image the pyramid.
*
*
*
* It is assumed that the gradient has the same scales as the input. If not
* initialized then it will be initialized. If already initialized it is
* assumed to be setup for the same input image size.
*
*
* @param input Input pyramid.
* @param gradient Computes image gradient
* @param derivX Pyramid where x-derivative is stored.
* @param derivY Pyramid where y-derivative is stored.
*/
public static
void gradient(ImagePyramid input, ImageGradient gradient, O[] derivX, O[] derivY )
{
for( int i = 0; i < input.getNumLayers(); i++ ) {
I imageIn = input.getLayer(i);
gradient.process(imageIn,derivX[i],derivY[i]);
}
}
/**
*
* Computes the hessian (2nd order derivative) for each image the pyramid.
*
*
* @param derivX (Input) Pyramid where x-derivative is stored.
* @param derivY (Input) Pyramid where y-derivative is stored.
* @param hessian (Input) Computes hessian from gradient
* @param derivXX (Output) Second derivative XX
* @param derivYY (Output) Second derivative YY
* @param derivXY (Output) Second derivative XY
*/
public static
void hessian(O[] derivX, O[] derivY , ImageHessian hessian , O[] derivXX, O[] derivYY , O[] derivXY )
{
for( int i = 0; i < derivX.length; i++ ) {
hessian.process(derivX[i],derivY[i],derivXX[i],derivYY[i],derivXY[i]);
}
}
/**
* Scales down the input by a factor of 2. Every other pixel along both axises is skipped.
*/
public static
void scaleDown2(T input , T output ) {
if( input instanceof ImageFloat32 ) {
ImplPyramidOps.scaleDown2((ImageFloat32)input,(ImageFloat32)output);
} else if( input instanceof ImageUInt8 ) {
ImplPyramidOps.scaleDown2((ImageUInt8)input,(ImageUInt8)output);
} else {
throw new IllegalArgumentException("Image type not yet supported");
}
}
/**
* Scales an image up using interpolation
*
* @param scale How much larger the output image will be.
*/
public static
void scaleImageUp(T input , T output , int scale, InterpolatePixelS interp ) {
if( scale <= 1 )
throw new IllegalArgumentException("Scale must be >= 2");
if( input instanceof ImageFloat32 ) {
ImplPyramidOps.scaleImageUp((ImageFloat32)input,(ImageFloat32)output,scale,(InterpolatePixelS)interp);
} else if( input instanceof ImageUInt8 ) {
ImplPyramidOps.scaleImageUp((ImageUInt8)input,(ImageUInt8)output,scale,(InterpolatePixelS)interp);
} else {
throw new IllegalArgumentException("Image type not yet supported");
}
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy