boofcv.core.encoding.ImplConvertNV21 Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of ip Show documentation
Show all versions of ip Show documentation
BoofCV is an open source Java library for real-time computer vision and robotics applications.
/*
* Copyright (c) 2011-2015, Peter Abeles. All Rights Reserved.
*
* This file is part of BoofCV (http://boofcv.org).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package boofcv.core.encoding;
import boofcv.struct.image.*;
/**
* NV21: The format is densely packed. Y is full resolution and UV are interlaced and 1/2 resolution.
* So same UV values within a 2x2 square
*
* @author Peter Abeles
*/
public class ImplConvertNV21 {
/**
* First block contains gray-scale information and UV data can be ignored.
*/
public static void nv21ToGray(byte[] dataNV, ImageUInt8 output) {
final int yStride = output.width;
// see if the whole thing can be copied as one big block to maximize speed
if( yStride == output.width && !output.isSubimage() ) {
System.arraycopy(dataNV,0,output.data,0,output.width*output.height);
} else {
// copy one row at a time
for( int y = 0; y < output.height; y++ ) {
int indexOut = output.startIndex + y*output.stride;
System.arraycopy(dataNV,y*yStride,output.data,indexOut,output.width);
}
}
}
/**
* First block contains gray-scale information and UV data can be ignored.
*/
public static void nv21ToGray(byte[] dataNV, ImageFloat32 output) {
for( int y = 0; y < output.height; y++ ) {
int indexIn = y*output.width;
int indexOut = output.startIndex + y*output.stride;
for( int x = 0; x < output.width; x++ ) {
output.data[ indexOut++ ] = dataNV[ indexIn++ ] & 0xFF;
}
}
}
public static void nv21ToMultiYuv_U8(byte[] dataNV, MultiSpectral output) {
ImageUInt8 Y = output.getBand(0);
ImageUInt8 U = output.getBand(1);
ImageUInt8 V = output.getBand(2);
final int uvStride = output.width/2;
nv21ToGray(dataNV, Y);
int startUV = output.width*output.height;
for( int row = 0; row < output.height; row++ ) {
int indexUV = startUV + (row/2)*(2*uvStride);
int indexOut = output.startIndex + row*output.stride;
for( int col = 0; col < output.width; col++ , indexOut++ ) {
U.data[indexOut] = dataNV[ indexUV ];
V.data[indexOut] = dataNV[ indexUV + 1 ];
indexUV += 2*(col&0x1);
}
}
}
public static void nv21ToMultiYuv_F32(byte[] dataNV, MultiSpectral output) {
ImageFloat32 Y = output.getBand(0);
ImageFloat32 U = output.getBand(1);
ImageFloat32 V = output.getBand(2);
final int uvStride = output.width/2;
nv21ToGray(dataNV, Y);
final int startUV = output.width*output.height;
for( int row = 0; row < output.height; row++ ) {
int indexUV = startUV + (row/2)*(2*uvStride);
int indexOut = output.startIndex + row*output.stride;
for( int col = 0; col < output.width; col++ , indexOut++ ) {
U.data[indexOut] = (dataNV[ indexUV ]&0xFF)-128;
V.data[indexOut] = (dataNV[ indexUV + 1 ]&0xFF)-128;
indexUV += 2*(col&0x1);
}
}
}
public static void nv21ToMultiRgb_U8(byte[] dataNV, MultiSpectral output) {
ImageUInt8 R = output.getBand(0);
ImageUInt8 G = output.getBand(1);
ImageUInt8 B = output.getBand(2);
final int yStride = output.width;
final int uvStride = output.width/2;
final int startUV = yStride*output.height;
for( int row = 0; row < output.height; row++ ) {
int indexY = row*yStride;
int indexUV = startUV + (row/2)*(2*uvStride);
int indexOut = output.startIndex + row*output.stride;
for( int col = 0; col < output.width; col++ , indexOut++ ) {
int y = 1191*((dataNV[indexY++] & 0xFF) - 16);
int cr = (dataNV[ indexUV ] & 0xFF) - 128;
int cb = (dataNV[ indexUV+1] & 0xFF) - 128;
if( y < 0 ) y = 0;
int r = (y + 1836*cr) >> 10;
int g = (y - 547*cr - 218*cb) >> 10;
int b = (y + 2165*cb) >> 10;
if( r < 0 ) r = 0; else if( r > 255 ) r = 255;
if( g < 0 ) g = 0; else if( g > 255 ) g = 255;
if( b < 0 ) b = 0; else if( b > 255 ) b = 255;
R.data[indexOut] = (byte)r;
G.data[indexOut] = (byte)g;
B.data[indexOut] = (byte)b;
indexUV += 2*(col&0x1);
}
}
}
public static void nv21ToInterleaved_U8(byte[] dataNV, InterleavedU8 output) {
final int yStride = output.width;
final int uvStride = output.width/2;
final int startUV = yStride*output.height;
for( int row = 0; row < output.height; row++ ) {
int indexY = row*yStride;
int indexUV = startUV + (row/2)*(2*uvStride);
int indexOut = output.startIndex + row*output.stride;
for( int col = 0; col < output.width; col++ ) {
int y = 1191*((dataNV[indexY++] & 0xFF) - 16);
int cr = (dataNV[ indexUV ] & 0xFF) - 128;
int cb = (dataNV[ indexUV+1] & 0xFF) - 128;
if( y < 0 ) y = 0;
int r = (y + 1836*cr) >> 10;
int g = (y - 547*cr - 218*cb) >> 10;
int b = (y + 2165*cb) >> 10;
if( r < 0 ) r = 0; else if( r > 255 ) r = 255;
if( g < 0 ) g = 0; else if( g > 255 ) g = 255;
if( b < 0 ) b = 0; else if( b > 255 ) b = 255;
output.data[indexOut++] = (byte)r;
output.data[indexOut++] = (byte)g;
output.data[indexOut++] = (byte)b;
indexUV += 2*(col&0x1);
}
}
}
public static void nv21ToMultiRgb_F32(byte[] dataNV, MultiSpectral output) {
ImageFloat32 R = output.getBand(0);
ImageFloat32 G = output.getBand(1);
ImageFloat32 B = output.getBand(2);
final int yStride = output.width;
final int uvStride = output.width/2;
final int startUV = yStride*output.height;
for( int row = 0; row < output.height; row++ ) {
int indexY = row*yStride;
int indexUV = startUV + (row/2)*(2*uvStride);
int indexOut = output.startIndex + row*output.stride;
for( int col = 0; col < output.width; col++ , indexOut++ ) {
int y = 1191*((dataNV[indexY++] & 0xFF) - 16);
int cr = (dataNV[ indexUV ] & 0xFF) - 128;
int cb = (dataNV[ indexUV+1] & 0xFF) - 128;
if( y < 0 ) y = 0;
int r = (y + 1836*cr) >> 10;
int g = (y - 547*cr - 218*cb) >> 10;
int b = (y + 2165*cb) >> 10;
if( r < 0 ) r = 0; else if( r > 255 ) r = 255;
if( g < 0 ) g = 0; else if( g > 255 ) g = 255;
if( b < 0 ) b = 0; else if( b > 255 ) b = 255;
R.data[indexOut] = r;
G.data[indexOut] = g;
B.data[indexOut] = b;
indexUV += 2*(col&0x1);
}
}
}
public static void nv21ToInterleaved_F32(byte[] dataNV, InterleavedF32 output) {
final int yStride = output.width;
final int uvStride = output.width/2;
final int startUV = yStride*output.height;
for( int row = 0; row < output.height; row++ ) {
int indexY = row*yStride;
int indexUV = startUV + (row/2)*(2*uvStride);
int indexOut = output.startIndex + row*output.stride;
for( int col = 0; col < output.width; col++ ) {
int y = 1191*((dataNV[indexY++] & 0xFF) - 16);
int cr = (dataNV[ indexUV ] & 0xFF) - 128;
int cb = (dataNV[ indexUV+1] & 0xFF) - 128;
if( y < 0 ) y = 0;
int r = (y + 1836*cr) >> 10;
int g = (y - 547*cr - 218*cb) >> 10;
int b = (y + 2165*cb) >> 10;
if( r < 0 ) r = 0; else if( r > 255 ) r = 255;
if( g < 0 ) g = 0; else if( g > 255 ) g = 255;
if( b < 0 ) b = 0; else if( b > 255 ) b = 255;
output.data[indexOut++] = r;
output.data[indexOut++] = g;
output.data[indexOut++] = b;
indexUV += 2*(col&0x1);
}
}
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy