All Downloads are FREE. Search and download functionalities are using the official Maven repository.

boofcv.alg.interpolate.array.PolynomialNeville_F32 Maven / Gradle / Ivy

Go to download

BoofCV is an open source Java library for real-time computer vision and robotics applications.

There is a newer version: 0.26
Show newest version
/*
 * Copyright (c) 2011-2013, Peter Abeles. All Rights Reserved.
 *
 * This file is part of BoofCV (http://boofcv.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package boofcv.alg.interpolate.array;


/**
 * 

* Neville's algorithm for polynomial interpolation and extrapolation. Neville's algorithm improves upon * Lagrange's formula by avoiding repetitive calculations. *

*

* See Numerical Recipes Third Edition page 118. *

* @author Peter Abeles */ public class PolynomialNeville_F32 extends Interpolate1D_F32 { private float c[]; private float d[]; public PolynomialNeville_F32(int maxDegree) { super(maxDegree); c = new float[M]; d = new float[M]; } public PolynomialNeville_F32(int maxDegree, float x[], float y[], int size) { super(maxDegree, x, y, size); c = new float[M]; d = new float[M]; } @Override protected float compute(float sample) { int i0 = index0; // find the index with the smallest difference and set c and b arrays // to their initial values int closestIndex = 0; float smallestDiff = Math.abs(sample - x[i0]); for (int i = i0; i < i0 + M; i++) { float diff = Math.abs(sample - x[i]); if (diff < smallestDiff) { closestIndex = i - i0; smallestDiff = diff; } c[i - i0] = y[i]; d[i - i0] = y[i]; } float estimate = y[i0 + closestIndex--]; for (int m = 1; m < M; m++) { for (int i = 0; i < M - m; i++) { float ho = x[i0 + i] - sample; float hp = x[i0 + i + m] - sample; float w = c[i + 1] - d[i]; float den = ho - hp; if (den == 0.0) { throw new RuntimeException("Two x's are identical"); } den = w / den; d[i] = hp * den; c[i] = ho * den; } if (2 * (closestIndex + 1) < M - m) { estimate += c[closestIndex + 1]; } else { estimate += d[closestIndex]; closestIndex--; } } return estimate; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy