All Downloads are FREE. Search and download functionalities are using the official Maven repository.

boofcv.alg.misc.ImageStatistics Maven / Gradle / Ivy

Go to download

BoofCV is an open source Java library for real-time computer vision and robotics applications.

There is a newer version: 0.26
Show newest version
/*
 * Copyright (c) 2011-2016, Peter Abeles. All Rights Reserved.
 *
 * This file is part of BoofCV (http://boofcv.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package boofcv.alg.misc;

import boofcv.alg.InputSanityCheck;
import boofcv.struct.image.*;

import javax.annotation.Generated;

/**
 * Computes statistical properties of pixels inside an image.
 *
 * 

DO NOT MODIFY: Generated by boofcv.alg.misc.GenerateImageStatistics

. * * @author Peter Abeles */ @Generated("boofcv.alg.misc.GenerateImageStatistics") public class ImageStatistics { /** * Returns the minimum element value. * * @param input Input image. Not modified. * @return Minimum pixel value. */ public static int min( GrayU8 input ) { return minU( input.data, input.startIndex, input.height, input.width , input.stride ); } /** * Returns the minimum element value. * * @param input Input image. Not modified. * @return Minimum pixel value. */ public static int min( InterleavedU8 input ) { return minU( input.data, input.startIndex, input.height, input.width*input.numBands , input.stride ); } private static int minU( byte[] array , int startIndex , int rows , int columns , int stride ) { int output = array[startIndex]& 0xFF; for( int y = 0; y < rows; y++ ) { int index = startIndex + y*stride; int end = index + columns; for( ; index < end; index++ ) { int v = array[index] & 0xFF; if( v < output ) output = v; } } return output; } /** * Returns the maximum element value. * * @param input Input image. Not modified. * @return Maximum pixel value. */ public static int max( GrayU8 input ) { return maxU( input.data, input.startIndex, input.height, input.width , input.stride ); } /** * Returns the maximum element value. * * @param input Input image. Not modified. * @return Maximum pixel value. */ public static int max( InterleavedU8 input ) { return maxU( input.data, input.startIndex, input.height, input.width*input.numBands , input.stride ); } private static int maxU( byte[] array , int startIndex , int rows , int columns , int stride ) { int output = array[startIndex]& 0xFF; for( int y = 0; y < rows; y++ ) { int index = startIndex + y*stride; int end = index + columns; for( ; index < end; index++ ) { int v = array[index] & 0xFF; if( v > output ) output = v; } } return output; } /** * Returns the maximum element value. * * @param input Input image. Not modified. * @return Maximum pixel value. */ public static int maxAbs( GrayU8 input ) { return maxAbsU( input.data, input.startIndex, input.height, input.width , input.stride ); } /** * Returns the maximum element value. * * @param input Input image. Not modified. * @return Maximum pixel value. */ public static int maxAbs( InterleavedU8 input ) { return maxAbsU( input.data, input.startIndex, input.height, input.width*input.numBands , input.stride ); } private static int maxAbsU( byte[] array , int startIndex , int rows , int columns , int stride ) { int output = array[startIndex]& 0xFF; for( int y = 0; y < rows; y++ ) { int index = startIndex + y*stride; int end = index + columns; for( ; index < end; index++ ) { int v = array[index] & 0xFF; if( v > output ) output = v; } } return output; } /** *

Computes the mean squared error (MSE) between the two images.

* * @param imgA first image. Not modified. * @param imgB second image. Not modified. * @return error between the two images. */ public static double meanDiffSq(GrayU8 imgA, GrayU8 imgB ) { InputSanityCheck.checkSameShape(imgA,imgB); return meanDiffSqU(imgA.data,imgA.startIndex,imgA.stride, imgB.data,imgB.startIndex,imgB.stride, imgA.height, imgA.width); } /** *

Computes the mean squared error (MSE) between the two images.

* * @param imgA first image. Not modified. * @param imgB second image. Not modified. * @return error between the two images. */ public static double meanDiffSq(InterleavedU8 imgA, InterleavedU8 imgB ) { InputSanityCheck.checkSameShape(imgA,imgB); return meanDiffSqU(imgA.data,imgA.startIndex,imgA.stride, imgB.data,imgB.startIndex,imgB.stride, imgA.height, imgA.width*imgA.numBands); } private static double meanDiffSqU(byte []dataA, int startIndexA , int strideA, byte []dataB, int startIndexB , int strideB, int rows , int columns ) { int total = 0; for (int y = 0; y < rows; y++) { int indexA = startIndexA + y * strideA; int indexB = startIndexB + y * strideB; int indexEnd = indexA+columns; for (; indexA < indexEnd; indexA++,indexB++) { int difference = (dataA[indexA]& 0xFF)-(dataB[indexB]& 0xFF); total += difference*difference; } } return total / (double)(rows*columns); } /** *

Computes the mean of absolute value error between the two images.

* * @param imgA first image. Not modified. * @param imgB second image. Not modified. * @return error between the two images. */ public static double meanDiffAbs(GrayU8 imgA, GrayU8 imgB ) { InputSanityCheck.checkSameShape(imgA,imgB); return meanDiffAbsU(imgA.data,imgA.startIndex,imgA.stride, imgB.data,imgB.startIndex,imgB.stride, imgA.height, imgA.width); } /** *

Computes the mean of absolute value error between the two images.

* * @param imgA first image. Not modified. * @param imgB second image. Not modified. * @return error between the two images. */ public static double meanDiffAbs(InterleavedU8 imgA, InterleavedU8 imgB ) { InputSanityCheck.checkSameShape(imgA,imgB); return meanDiffAbsU(imgA.data,imgA.startIndex,imgA.stride, imgB.data,imgB.startIndex,imgB.stride, imgA.height, imgA.width*imgA.numBands); } private static double meanDiffAbsU(byte []dataA, int startIndexA , int strideA, byte []dataB, int startIndexB , int strideB, int rows , int columns ) { int total = 0; for (int y = 0; y < rows; y++) { int indexA = startIndexA + y * strideA; int indexB = startIndexB + y * strideB; int indexEnd = indexA+columns; for (; indexA < indexEnd; indexA++,indexB++) { int difference = (dataA[indexA]& 0xFF)-(dataB[indexB]& 0xFF); total += Math.abs(difference); } } return total / (double)(rows*columns); } /** *

* Returns the sum of all the pixels in the image. *

* * @param img Input image. Not modified. */ public static int sum( GrayU8 img ) { final int rows = img.height; final int columns = img.width; int total = 0; for (int y = 0; y < rows; y++) { int index = img.startIndex + y * img.stride; int indexEnd = index+columns; for (; index < indexEnd; index++ ) { total += img.data[index] & 0xFF; } } return total; } /** * Returns the mean pixel intensity value. * * @param img Input image. Not modified. * @return Mean pixel intensity value */ public static double mean( GrayU8 img ) { return sum(img)/(double)(img.width*img.height); } /** *

* Returns the sum of all the pixels in the image. *

* * @param img Input image. Not modified. */ public static int sum( InterleavedU8 img ) { final int rows = img.height; final int columns = img.width*img.numBands; int total = 0; for (int y = 0; y < rows; y++) { int index = img.startIndex + y * img.stride; int indexEnd = index+columns; for (; index < indexEnd; index++ ) { total += img.data[index] & 0xFF; } } return total; } /** * Returns the mean pixel intensity value. * * @param img Input image. Not modified. * @return Mean pixel intensity value */ public static double mean( InterleavedU8 img ) { return sum(img)/(double)(img.width*img.height*img.numBands); } /** * Computes the variance of pixel intensity values inside the image. * * @param img Input image. Not modified. * @param mean Mean pixel intensity value. * @return Pixel variance */ public static double variance(GrayU8 img , double mean ) { double variance = 0; for (int y = 0; y < img.height; y++) { int index = img.getStartIndex() + y * img.getStride(); int indexEnd = index+img.width; // for(int x = 0; x < img.width; x++ ) { for (; index < indexEnd; index++ ) { double d = (img.data[index]& 0xFF) - mean; variance += d*d; } } return variance/(img.width*img.height); } /** * Computes the histogram of intensity values for the image. * * @param input (input) Image. * @param histogram (output) Storage for histogram. Number of elements must be equal to max value. */ public static void histogram(GrayU8 input , int histogram[] ) { for( int i = 0; i < histogram.length; i++ ) histogram[i] = 0; for( int y = 0; y < input.height; y++ ) { int index = input.startIndex + y*input.stride; int end = index + input.width; for( ; index < end; index++ ) { histogram[input.data[index]& 0xFF]++; } } } /** * Returns the minimum element value. * * @param input Input image. Not modified. * @return Minimum pixel value. */ public static int min( GrayS8 input ) { return min( input.data, input.startIndex, input.height, input.width , input.stride ); } /** * Returns the minimum element value. * * @param input Input image. Not modified. * @return Minimum pixel value. */ public static int min( InterleavedS8 input ) { return min( input.data, input.startIndex, input.height, input.width*input.numBands , input.stride ); } private static int min( byte[] array , int startIndex , int rows , int columns , int stride ) { int output = array[startIndex]; for( int y = 0; y < rows; y++ ) { int index = startIndex + y*stride; int end = index + columns; for( ; index < end; index++ ) { int v = array[index] ; if( v < output ) output = v; } } return output; } /** * Returns the maximum element value. * * @param input Input image. Not modified. * @return Maximum pixel value. */ public static int max( GrayS8 input ) { return max( input.data, input.startIndex, input.height, input.width , input.stride ); } /** * Returns the maximum element value. * * @param input Input image. Not modified. * @return Maximum pixel value. */ public static int max( InterleavedS8 input ) { return max( input.data, input.startIndex, input.height, input.width*input.numBands , input.stride ); } private static int max( byte[] array , int startIndex , int rows , int columns , int stride ) { int output = array[startIndex]; for( int y = 0; y < rows; y++ ) { int index = startIndex + y*stride; int end = index + columns; for( ; index < end; index++ ) { int v = array[index] ; if( v > output ) output = v; } } return output; } /** * Returns the maximum element value. * * @param input Input image. Not modified. * @return Maximum pixel value. */ public static int maxAbs( GrayS8 input ) { return maxAbs( input.data, input.startIndex, input.height, input.width , input.stride ); } /** * Returns the maximum element value. * * @param input Input image. Not modified. * @return Maximum pixel value. */ public static int maxAbs( InterleavedS8 input ) { return maxAbs( input.data, input.startIndex, input.height, input.width*input.numBands , input.stride ); } private static int maxAbs( byte[] array , int startIndex , int rows , int columns , int stride ) { int output = array[startIndex]; for( int y = 0; y < rows; y++ ) { int index = startIndex + y*stride; int end = index + columns; for( ; index < end; index++ ) { int v = Math.abs(array[index]); if( v > output ) output = v; } } return output; } /** *

Computes the mean squared error (MSE) between the two images.

* * @param imgA first image. Not modified. * @param imgB second image. Not modified. * @return error between the two images. */ public static double meanDiffSq(GrayS8 imgA, GrayS8 imgB ) { InputSanityCheck.checkSameShape(imgA,imgB); return meanDiffSq(imgA.data,imgA.startIndex,imgA.stride, imgB.data,imgB.startIndex,imgB.stride, imgA.height, imgA.width); } /** *

Computes the mean squared error (MSE) between the two images.

* * @param imgA first image. Not modified. * @param imgB second image. Not modified. * @return error between the two images. */ public static double meanDiffSq(InterleavedS8 imgA, InterleavedS8 imgB ) { InputSanityCheck.checkSameShape(imgA,imgB); return meanDiffSq(imgA.data,imgA.startIndex,imgA.stride, imgB.data,imgB.startIndex,imgB.stride, imgA.height, imgA.width*imgA.numBands); } private static double meanDiffSq(byte []dataA, int startIndexA , int strideA, byte []dataB, int startIndexB , int strideB, int rows , int columns ) { int total = 0; for (int y = 0; y < rows; y++) { int indexA = startIndexA + y * strideA; int indexB = startIndexB + y * strideB; int indexEnd = indexA+columns; for (; indexA < indexEnd; indexA++,indexB++) { int difference = (dataA[indexA])-(dataB[indexB]); total += difference*difference; } } return total / (double)(rows*columns); } /** *

Computes the mean of absolute value error between the two images.

* * @param imgA first image. Not modified. * @param imgB second image. Not modified. * @return error between the two images. */ public static double meanDiffAbs(GrayS8 imgA, GrayS8 imgB ) { InputSanityCheck.checkSameShape(imgA,imgB); return meanDiffAbs(imgA.data,imgA.startIndex,imgA.stride, imgB.data,imgB.startIndex,imgB.stride, imgA.height, imgA.width); } /** *

Computes the mean of absolute value error between the two images.

* * @param imgA first image. Not modified. * @param imgB second image. Not modified. * @return error between the two images. */ public static double meanDiffAbs(InterleavedS8 imgA, InterleavedS8 imgB ) { InputSanityCheck.checkSameShape(imgA,imgB); return meanDiffAbs(imgA.data,imgA.startIndex,imgA.stride, imgB.data,imgB.startIndex,imgB.stride, imgA.height, imgA.width*imgA.numBands); } private static double meanDiffAbs(byte []dataA, int startIndexA , int strideA, byte []dataB, int startIndexB , int strideB, int rows , int columns ) { int total = 0; for (int y = 0; y < rows; y++) { int indexA = startIndexA + y * strideA; int indexB = startIndexB + y * strideB; int indexEnd = indexA+columns; for (; indexA < indexEnd; indexA++,indexB++) { int difference = (dataA[indexA])-(dataB[indexB]); total += Math.abs(difference); } } return total / (double)(rows*columns); } /** *

* Returns the sum of all the pixels in the image. *

* * @param img Input image. Not modified. */ public static int sum( GrayS8 img ) { final int rows = img.height; final int columns = img.width; int total = 0; for (int y = 0; y < rows; y++) { int index = img.startIndex + y * img.stride; int indexEnd = index+columns; for (; index < indexEnd; index++ ) { total += img.data[index] ; } } return total; } /** * Returns the mean pixel intensity value. * * @param img Input image. Not modified. * @return Mean pixel intensity value */ public static double mean( GrayS8 img ) { return sum(img)/(double)(img.width*img.height); } /** *

* Returns the sum of all the pixels in the image. *

* * @param img Input image. Not modified. */ public static int sum( InterleavedS8 img ) { final int rows = img.height; final int columns = img.width*img.numBands; int total = 0; for (int y = 0; y < rows; y++) { int index = img.startIndex + y * img.stride; int indexEnd = index+columns; for (; index < indexEnd; index++ ) { total += img.data[index] ; } } return total; } /** * Returns the mean pixel intensity value. * * @param img Input image. Not modified. * @return Mean pixel intensity value */ public static double mean( InterleavedS8 img ) { return sum(img)/(double)(img.width*img.height*img.numBands); } /** * Computes the variance of pixel intensity values inside the image. * * @param img Input image. Not modified. * @param mean Mean pixel intensity value. * @return Pixel variance */ public static double variance(GrayS8 img , double mean ) { double variance = 0; for (int y = 0; y < img.height; y++) { int index = img.getStartIndex() + y * img.getStride(); int indexEnd = index+img.width; // for(int x = 0; x < img.width; x++ ) { for (; index < indexEnd; index++ ) { double d = (img.data[index]) - mean; variance += d*d; } } return variance/(img.width*img.height); } /** * Computes the histogram of intensity values for the image. * * @param input (input) Image. * @param minValue (input) Minimum possible intensity value * @param histogram (output) Storage for histogram. Number of elements must be equal to max value. */ public static void histogram(GrayS8 input , int minValue , int histogram[] ) { for( int i = 0; i < histogram.length; i++ ) histogram[i] = 0; for( int y = 0; y < input.height; y++ ) { int index = input.startIndex + y*input.stride; int end = index + input.width; for( ; index < end; index++ ) { // floor value. just convert to int rounds towards zero histogram[input.data[index] - minValue ]++; } } } /** * Returns the minimum element value. * * @param input Input image. Not modified. * @return Minimum pixel value. */ public static int min( GrayU16 input ) { return minU( input.data, input.startIndex, input.height, input.width , input.stride ); } /** * Returns the minimum element value. * * @param input Input image. Not modified. * @return Minimum pixel value. */ public static int min( InterleavedU16 input ) { return minU( input.data, input.startIndex, input.height, input.width*input.numBands , input.stride ); } private static int minU( short[] array , int startIndex , int rows , int columns , int stride ) { int output = array[startIndex]& 0xFFFF; for( int y = 0; y < rows; y++ ) { int index = startIndex + y*stride; int end = index + columns; for( ; index < end; index++ ) { int v = array[index] & 0xFFFF; if( v < output ) output = v; } } return output; } /** * Returns the maximum element value. * * @param input Input image. Not modified. * @return Maximum pixel value. */ public static int max( GrayU16 input ) { return maxU( input.data, input.startIndex, input.height, input.width , input.stride ); } /** * Returns the maximum element value. * * @param input Input image. Not modified. * @return Maximum pixel value. */ public static int max( InterleavedU16 input ) { return maxU( input.data, input.startIndex, input.height, input.width*input.numBands , input.stride ); } private static int maxU( short[] array , int startIndex , int rows , int columns , int stride ) { int output = array[startIndex]& 0xFFFF; for( int y = 0; y < rows; y++ ) { int index = startIndex + y*stride; int end = index + columns; for( ; index < end; index++ ) { int v = array[index] & 0xFFFF; if( v > output ) output = v; } } return output; } /** * Returns the maximum element value. * * @param input Input image. Not modified. * @return Maximum pixel value. */ public static int maxAbs( GrayU16 input ) { return maxAbsU( input.data, input.startIndex, input.height, input.width , input.stride ); } /** * Returns the maximum element value. * * @param input Input image. Not modified. * @return Maximum pixel value. */ public static int maxAbs( InterleavedU16 input ) { return maxAbsU( input.data, input.startIndex, input.height, input.width*input.numBands , input.stride ); } private static int maxAbsU( short[] array , int startIndex , int rows , int columns , int stride ) { int output = array[startIndex]& 0xFFFF; for( int y = 0; y < rows; y++ ) { int index = startIndex + y*stride; int end = index + columns; for( ; index < end; index++ ) { int v = array[index] & 0xFFFF; if( v > output ) output = v; } } return output; } /** *

Computes the mean squared error (MSE) between the two images.

* * @param imgA first image. Not modified. * @param imgB second image. Not modified. * @return error between the two images. */ public static double meanDiffSq(GrayU16 imgA, GrayU16 imgB ) { InputSanityCheck.checkSameShape(imgA,imgB); return meanDiffSqU(imgA.data,imgA.startIndex,imgA.stride, imgB.data,imgB.startIndex,imgB.stride, imgA.height, imgA.width); } /** *

Computes the mean squared error (MSE) between the two images.

* * @param imgA first image. Not modified. * @param imgB second image. Not modified. * @return error between the two images. */ public static double meanDiffSq(InterleavedU16 imgA, InterleavedU16 imgB ) { InputSanityCheck.checkSameShape(imgA,imgB); return meanDiffSqU(imgA.data,imgA.startIndex,imgA.stride, imgB.data,imgB.startIndex,imgB.stride, imgA.height, imgA.width*imgA.numBands); } private static double meanDiffSqU(short []dataA, int startIndexA , int strideA, short []dataB, int startIndexB , int strideB, int rows , int columns ) { int total = 0; for (int y = 0; y < rows; y++) { int indexA = startIndexA + y * strideA; int indexB = startIndexB + y * strideB; int indexEnd = indexA+columns; for (; indexA < indexEnd; indexA++,indexB++) { int difference = (dataA[indexA]& 0xFFFF)-(dataB[indexB]& 0xFFFF); total += difference*difference; } } return total / (double)(rows*columns); } /** *

Computes the mean of absolute value error between the two images.

* * @param imgA first image. Not modified. * @param imgB second image. Not modified. * @return error between the two images. */ public static double meanDiffAbs(GrayU16 imgA, GrayU16 imgB ) { InputSanityCheck.checkSameShape(imgA,imgB); return meanDiffAbsU(imgA.data,imgA.startIndex,imgA.stride, imgB.data,imgB.startIndex,imgB.stride, imgA.height, imgA.width); } /** *

Computes the mean of absolute value error between the two images.

* * @param imgA first image. Not modified. * @param imgB second image. Not modified. * @return error between the two images. */ public static double meanDiffAbs(InterleavedU16 imgA, InterleavedU16 imgB ) { InputSanityCheck.checkSameShape(imgA,imgB); return meanDiffAbsU(imgA.data,imgA.startIndex,imgA.stride, imgB.data,imgB.startIndex,imgB.stride, imgA.height, imgA.width*imgA.numBands); } private static double meanDiffAbsU(short []dataA, int startIndexA , int strideA, short []dataB, int startIndexB , int strideB, int rows , int columns ) { int total = 0; for (int y = 0; y < rows; y++) { int indexA = startIndexA + y * strideA; int indexB = startIndexB + y * strideB; int indexEnd = indexA+columns; for (; indexA < indexEnd; indexA++,indexB++) { int difference = (dataA[indexA]& 0xFFFF)-(dataB[indexB]& 0xFFFF); total += Math.abs(difference); } } return total / (double)(rows*columns); } /** *

* Returns the sum of all the pixels in the image. *

* * @param img Input image. Not modified. */ public static int sum( GrayU16 img ) { final int rows = img.height; final int columns = img.width; int total = 0; for (int y = 0; y < rows; y++) { int index = img.startIndex + y * img.stride; int indexEnd = index+columns; for (; index < indexEnd; index++ ) { total += img.data[index] & 0xFFFF; } } return total; } /** * Returns the mean pixel intensity value. * * @param img Input image. Not modified. * @return Mean pixel intensity value */ public static double mean( GrayU16 img ) { return sum(img)/(double)(img.width*img.height); } /** *

* Returns the sum of all the pixels in the image. *

* * @param img Input image. Not modified. */ public static int sum( InterleavedU16 img ) { final int rows = img.height; final int columns = img.width*img.numBands; int total = 0; for (int y = 0; y < rows; y++) { int index = img.startIndex + y * img.stride; int indexEnd = index+columns; for (; index < indexEnd; index++ ) { total += img.data[index] & 0xFFFF; } } return total; } /** * Returns the mean pixel intensity value. * * @param img Input image. Not modified. * @return Mean pixel intensity value */ public static double mean( InterleavedU16 img ) { return sum(img)/(double)(img.width*img.height*img.numBands); } /** * Computes the variance of pixel intensity values inside the image. * * @param img Input image. Not modified. * @param mean Mean pixel intensity value. * @return Pixel variance */ public static double variance(GrayU16 img , double mean ) { double variance = 0; for (int y = 0; y < img.height; y++) { int index = img.getStartIndex() + y * img.getStride(); int indexEnd = index+img.width; // for(int x = 0; x < img.width; x++ ) { for (; index < indexEnd; index++ ) { double d = (img.data[index]& 0xFFFF) - mean; variance += d*d; } } return variance/(img.width*img.height); } /** * Computes the histogram of intensity values for the image. * * @param input (input) Image. * @param histogram (output) Storage for histogram. Number of elements must be equal to max value. */ public static void histogram(GrayU16 input , int histogram[] ) { for( int i = 0; i < histogram.length; i++ ) histogram[i] = 0; for( int y = 0; y < input.height; y++ ) { int index = input.startIndex + y*input.stride; int end = index + input.width; for( ; index < end; index++ ) { histogram[input.data[index]& 0xFFFF]++; } } } /** * Returns the minimum element value. * * @param input Input image. Not modified. * @return Minimum pixel value. */ public static int min( GrayS16 input ) { return min( input.data, input.startIndex, input.height, input.width , input.stride ); } /** * Returns the minimum element value. * * @param input Input image. Not modified. * @return Minimum pixel value. */ public static int min( InterleavedS16 input ) { return min( input.data, input.startIndex, input.height, input.width*input.numBands , input.stride ); } private static int min( short[] array , int startIndex , int rows , int columns , int stride ) { int output = array[startIndex]; for( int y = 0; y < rows; y++ ) { int index = startIndex + y*stride; int end = index + columns; for( ; index < end; index++ ) { int v = array[index] ; if( v < output ) output = v; } } return output; } /** * Returns the maximum element value. * * @param input Input image. Not modified. * @return Maximum pixel value. */ public static int max( GrayS16 input ) { return max( input.data, input.startIndex, input.height, input.width , input.stride ); } /** * Returns the maximum element value. * * @param input Input image. Not modified. * @return Maximum pixel value. */ public static int max( InterleavedS16 input ) { return max( input.data, input.startIndex, input.height, input.width*input.numBands , input.stride ); } private static int max( short[] array , int startIndex , int rows , int columns , int stride ) { int output = array[startIndex]; for( int y = 0; y < rows; y++ ) { int index = startIndex + y*stride; int end = index + columns; for( ; index < end; index++ ) { int v = array[index] ; if( v > output ) output = v; } } return output; } /** * Returns the maximum element value. * * @param input Input image. Not modified. * @return Maximum pixel value. */ public static int maxAbs( GrayS16 input ) { return maxAbs( input.data, input.startIndex, input.height, input.width , input.stride ); } /** * Returns the maximum element value. * * @param input Input image. Not modified. * @return Maximum pixel value. */ public static int maxAbs( InterleavedS16 input ) { return maxAbs( input.data, input.startIndex, input.height, input.width*input.numBands , input.stride ); } private static int maxAbs( short[] array , int startIndex , int rows , int columns , int stride ) { int output = array[startIndex]; for( int y = 0; y < rows; y++ ) { int index = startIndex + y*stride; int end = index + columns; for( ; index < end; index++ ) { int v = Math.abs(array[index]); if( v > output ) output = v; } } return output; } /** *

Computes the mean squared error (MSE) between the two images.

* * @param imgA first image. Not modified. * @param imgB second image. Not modified. * @return error between the two images. */ public static double meanDiffSq(GrayS16 imgA, GrayS16 imgB ) { InputSanityCheck.checkSameShape(imgA,imgB); return meanDiffSq(imgA.data,imgA.startIndex,imgA.stride, imgB.data,imgB.startIndex,imgB.stride, imgA.height, imgA.width); } /** *

Computes the mean squared error (MSE) between the two images.

* * @param imgA first image. Not modified. * @param imgB second image. Not modified. * @return error between the two images. */ public static double meanDiffSq(InterleavedS16 imgA, InterleavedS16 imgB ) { InputSanityCheck.checkSameShape(imgA,imgB); return meanDiffSq(imgA.data,imgA.startIndex,imgA.stride, imgB.data,imgB.startIndex,imgB.stride, imgA.height, imgA.width*imgA.numBands); } private static double meanDiffSq(short []dataA, int startIndexA , int strideA, short []dataB, int startIndexB , int strideB, int rows , int columns ) { int total = 0; for (int y = 0; y < rows; y++) { int indexA = startIndexA + y * strideA; int indexB = startIndexB + y * strideB; int indexEnd = indexA+columns; for (; indexA < indexEnd; indexA++,indexB++) { int difference = (dataA[indexA])-(dataB[indexB]); total += difference*difference; } } return total / (double)(rows*columns); } /** *

Computes the mean of absolute value error between the two images.

* * @param imgA first image. Not modified. * @param imgB second image. Not modified. * @return error between the two images. */ public static double meanDiffAbs(GrayS16 imgA, GrayS16 imgB ) { InputSanityCheck.checkSameShape(imgA,imgB); return meanDiffAbs(imgA.data,imgA.startIndex,imgA.stride, imgB.data,imgB.startIndex,imgB.stride, imgA.height, imgA.width); } /** *

Computes the mean of absolute value error between the two images.

* * @param imgA first image. Not modified. * @param imgB second image. Not modified. * @return error between the two images. */ public static double meanDiffAbs(InterleavedS16 imgA, InterleavedS16 imgB ) { InputSanityCheck.checkSameShape(imgA,imgB); return meanDiffAbs(imgA.data,imgA.startIndex,imgA.stride, imgB.data,imgB.startIndex,imgB.stride, imgA.height, imgA.width*imgA.numBands); } private static double meanDiffAbs(short []dataA, int startIndexA , int strideA, short []dataB, int startIndexB , int strideB, int rows , int columns ) { int total = 0; for (int y = 0; y < rows; y++) { int indexA = startIndexA + y * strideA; int indexB = startIndexB + y * strideB; int indexEnd = indexA+columns; for (; indexA < indexEnd; indexA++,indexB++) { int difference = (dataA[indexA])-(dataB[indexB]); total += Math.abs(difference); } } return total / (double)(rows*columns); } /** *

* Returns the sum of all the pixels in the image. *

* * @param img Input image. Not modified. */ public static int sum( GrayS16 img ) { final int rows = img.height; final int columns = img.width; int total = 0; for (int y = 0; y < rows; y++) { int index = img.startIndex + y * img.stride; int indexEnd = index+columns; for (; index < indexEnd; index++ ) { total += img.data[index] ; } } return total; } /** * Returns the mean pixel intensity value. * * @param img Input image. Not modified. * @return Mean pixel intensity value */ public static double mean( GrayS16 img ) { return sum(img)/(double)(img.width*img.height); } /** *

* Returns the sum of all the pixels in the image. *

* * @param img Input image. Not modified. */ public static int sum( InterleavedS16 img ) { final int rows = img.height; final int columns = img.width*img.numBands; int total = 0; for (int y = 0; y < rows; y++) { int index = img.startIndex + y * img.stride; int indexEnd = index+columns; for (; index < indexEnd; index++ ) { total += img.data[index] ; } } return total; } /** * Returns the mean pixel intensity value. * * @param img Input image. Not modified. * @return Mean pixel intensity value */ public static double mean( InterleavedS16 img ) { return sum(img)/(double)(img.width*img.height*img.numBands); } /** * Computes the variance of pixel intensity values inside the image. * * @param img Input image. Not modified. * @param mean Mean pixel intensity value. * @return Pixel variance */ public static double variance(GrayS16 img , double mean ) { double variance = 0; for (int y = 0; y < img.height; y++) { int index = img.getStartIndex() + y * img.getStride(); int indexEnd = index+img.width; // for(int x = 0; x < img.width; x++ ) { for (; index < indexEnd; index++ ) { double d = (img.data[index]) - mean; variance += d*d; } } return variance/(img.width*img.height); } /** * Computes the histogram of intensity values for the image. * * @param input (input) Image. * @param minValue (input) Minimum possible intensity value * @param histogram (output) Storage for histogram. Number of elements must be equal to max value. */ public static void histogram(GrayS16 input , int minValue , int histogram[] ) { for( int i = 0; i < histogram.length; i++ ) histogram[i] = 0; for( int y = 0; y < input.height; y++ ) { int index = input.startIndex + y*input.stride; int end = index + input.width; for( ; index < end; index++ ) { // floor value. just convert to int rounds towards zero histogram[input.data[index] - minValue ]++; } } } /** * Returns the minimum element value. * * @param input Input image. Not modified. * @return Minimum pixel value. */ public static int min( GrayS32 input ) { return min( input.data, input.startIndex, input.height, input.width , input.stride ); } /** * Returns the minimum element value. * * @param input Input image. Not modified. * @return Minimum pixel value. */ public static int min( InterleavedS32 input ) { return min( input.data, input.startIndex, input.height, input.width*input.numBands , input.stride ); } private static int min( int[] array , int startIndex , int rows , int columns , int stride ) { int output = array[startIndex]; for( int y = 0; y < rows; y++ ) { int index = startIndex + y*stride; int end = index + columns; for( ; index < end; index++ ) { int v = array[index] ; if( v < output ) output = v; } } return output; } /** * Returns the maximum element value. * * @param input Input image. Not modified. * @return Maximum pixel value. */ public static int max( GrayS32 input ) { return max( input.data, input.startIndex, input.height, input.width , input.stride ); } /** * Returns the maximum element value. * * @param input Input image. Not modified. * @return Maximum pixel value. */ public static int max( InterleavedS32 input ) { return max( input.data, input.startIndex, input.height, input.width*input.numBands , input.stride ); } private static int max( int[] array , int startIndex , int rows , int columns , int stride ) { int output = array[startIndex]; for( int y = 0; y < rows; y++ ) { int index = startIndex + y*stride; int end = index + columns; for( ; index < end; index++ ) { int v = array[index] ; if( v > output ) output = v; } } return output; } /** * Returns the maximum element value. * * @param input Input image. Not modified. * @return Maximum pixel value. */ public static int maxAbs( GrayS32 input ) { return maxAbs( input.data, input.startIndex, input.height, input.width , input.stride ); } /** * Returns the maximum element value. * * @param input Input image. Not modified. * @return Maximum pixel value. */ public static int maxAbs( InterleavedS32 input ) { return maxAbs( input.data, input.startIndex, input.height, input.width*input.numBands , input.stride ); } private static int maxAbs( int[] array , int startIndex , int rows , int columns , int stride ) { int output = array[startIndex]; for( int y = 0; y < rows; y++ ) { int index = startIndex + y*stride; int end = index + columns; for( ; index < end; index++ ) { int v = Math.abs(array[index]); if( v > output ) output = v; } } return output; } /** *

Computes the mean squared error (MSE) between the two images.

* * @param imgA first image. Not modified. * @param imgB second image. Not modified. * @return error between the two images. */ public static double meanDiffSq(GrayS32 imgA, GrayS32 imgB ) { InputSanityCheck.checkSameShape(imgA,imgB); return meanDiffSq(imgA.data,imgA.startIndex,imgA.stride, imgB.data,imgB.startIndex,imgB.stride, imgA.height, imgA.width); } /** *

Computes the mean squared error (MSE) between the two images.

* * @param imgA first image. Not modified. * @param imgB second image. Not modified. * @return error between the two images. */ public static double meanDiffSq(InterleavedS32 imgA, InterleavedS32 imgB ) { InputSanityCheck.checkSameShape(imgA,imgB); return meanDiffSq(imgA.data,imgA.startIndex,imgA.stride, imgB.data,imgB.startIndex,imgB.stride, imgA.height, imgA.width*imgA.numBands); } private static double meanDiffSq(int []dataA, int startIndexA , int strideA, int []dataB, int startIndexB , int strideB, int rows , int columns ) { int total = 0; for (int y = 0; y < rows; y++) { int indexA = startIndexA + y * strideA; int indexB = startIndexB + y * strideB; int indexEnd = indexA+columns; for (; indexA < indexEnd; indexA++,indexB++) { int difference = (dataA[indexA])-(dataB[indexB]); total += difference*difference; } } return total / (double)(rows*columns); } /** *

Computes the mean of absolute value error between the two images.

* * @param imgA first image. Not modified. * @param imgB second image. Not modified. * @return error between the two images. */ public static double meanDiffAbs(GrayS32 imgA, GrayS32 imgB ) { InputSanityCheck.checkSameShape(imgA,imgB); return meanDiffAbs(imgA.data,imgA.startIndex,imgA.stride, imgB.data,imgB.startIndex,imgB.stride, imgA.height, imgA.width); } /** *

Computes the mean of absolute value error between the two images.

* * @param imgA first image. Not modified. * @param imgB second image. Not modified. * @return error between the two images. */ public static double meanDiffAbs(InterleavedS32 imgA, InterleavedS32 imgB ) { InputSanityCheck.checkSameShape(imgA,imgB); return meanDiffAbs(imgA.data,imgA.startIndex,imgA.stride, imgB.data,imgB.startIndex,imgB.stride, imgA.height, imgA.width*imgA.numBands); } private static double meanDiffAbs(int []dataA, int startIndexA , int strideA, int []dataB, int startIndexB , int strideB, int rows , int columns ) { int total = 0; for (int y = 0; y < rows; y++) { int indexA = startIndexA + y * strideA; int indexB = startIndexB + y * strideB; int indexEnd = indexA+columns; for (; indexA < indexEnd; indexA++,indexB++) { int difference = (dataA[indexA])-(dataB[indexB]); total += Math.abs(difference); } } return total / (double)(rows*columns); } /** *

* Returns the sum of all the pixels in the image. *

* * @param img Input image. Not modified. */ public static int sum( GrayS32 img ) { final int rows = img.height; final int columns = img.width; int total = 0; for (int y = 0; y < rows; y++) { int index = img.startIndex + y * img.stride; int indexEnd = index+columns; for (; index < indexEnd; index++ ) { total += img.data[index] ; } } return total; } /** * Returns the mean pixel intensity value. * * @param img Input image. Not modified. * @return Mean pixel intensity value */ public static double mean( GrayS32 img ) { return sum(img)/(double)(img.width*img.height); } /** *

* Returns the sum of all the pixels in the image. *

* * @param img Input image. Not modified. */ public static int sum( InterleavedS32 img ) { final int rows = img.height; final int columns = img.width*img.numBands; int total = 0; for (int y = 0; y < rows; y++) { int index = img.startIndex + y * img.stride; int indexEnd = index+columns; for (; index < indexEnd; index++ ) { total += img.data[index] ; } } return total; } /** * Returns the mean pixel intensity value. * * @param img Input image. Not modified. * @return Mean pixel intensity value */ public static double mean( InterleavedS32 img ) { return sum(img)/(double)(img.width*img.height*img.numBands); } /** * Computes the variance of pixel intensity values inside the image. * * @param img Input image. Not modified. * @param mean Mean pixel intensity value. * @return Pixel variance */ public static double variance(GrayS32 img , double mean ) { double variance = 0; for (int y = 0; y < img.height; y++) { int index = img.getStartIndex() + y * img.getStride(); int indexEnd = index+img.width; // for(int x = 0; x < img.width; x++ ) { for (; index < indexEnd; index++ ) { double d = (img.data[index]) - mean; variance += d*d; } } return variance/(img.width*img.height); } /** * Computes the histogram of intensity values for the image. * * @param input (input) Image. * @param minValue (input) Minimum possible intensity value * @param histogram (output) Storage for histogram. Number of elements must be equal to max value. */ public static void histogram(GrayS32 input , int minValue , int histogram[] ) { for( int i = 0; i < histogram.length; i++ ) histogram[i] = 0; for( int y = 0; y < input.height; y++ ) { int index = input.startIndex + y*input.stride; int end = index + input.width; for( ; index < end; index++ ) { // floor value. just convert to int rounds towards zero histogram[input.data[index] - minValue ]++; } } } /** * Returns the minimum element value. * * @param input Input image. Not modified. * @return Minimum pixel value. */ public static long min( GrayS64 input ) { return min( input.data, input.startIndex, input.height, input.width , input.stride ); } /** * Returns the minimum element value. * * @param input Input image. Not modified. * @return Minimum pixel value. */ public static long min( InterleavedS64 input ) { return min( input.data, input.startIndex, input.height, input.width*input.numBands , input.stride ); } private static long min( long[] array , int startIndex , int rows , int columns , int stride ) { long output = array[startIndex]; for( int y = 0; y < rows; y++ ) { int index = startIndex + y*stride; int end = index + columns; for( ; index < end; index++ ) { long v = array[index] ; if( v < output ) output = v; } } return output; } /** * Returns the maximum element value. * * @param input Input image. Not modified. * @return Maximum pixel value. */ public static long max( GrayS64 input ) { return max( input.data, input.startIndex, input.height, input.width , input.stride ); } /** * Returns the maximum element value. * * @param input Input image. Not modified. * @return Maximum pixel value. */ public static long max( InterleavedS64 input ) { return max( input.data, input.startIndex, input.height, input.width*input.numBands , input.stride ); } private static long max( long[] array , int startIndex , int rows , int columns , int stride ) { long output = array[startIndex]; for( int y = 0; y < rows; y++ ) { int index = startIndex + y*stride; int end = index + columns; for( ; index < end; index++ ) { long v = array[index] ; if( v > output ) output = v; } } return output; } /** * Returns the maximum element value. * * @param input Input image. Not modified. * @return Maximum pixel value. */ public static long maxAbs( GrayS64 input ) { return maxAbs( input.data, input.startIndex, input.height, input.width , input.stride ); } /** * Returns the maximum element value. * * @param input Input image. Not modified. * @return Maximum pixel value. */ public static long maxAbs( InterleavedS64 input ) { return maxAbs( input.data, input.startIndex, input.height, input.width*input.numBands , input.stride ); } private static long maxAbs( long[] array , int startIndex , int rows , int columns , int stride ) { long output = array[startIndex]; for( int y = 0; y < rows; y++ ) { int index = startIndex + y*stride; int end = index + columns; for( ; index < end; index++ ) { long v = Math.abs(array[index]); if( v > output ) output = v; } } return output; } /** *

Computes the mean squared error (MSE) between the two images.

* * @param imgA first image. Not modified. * @param imgB second image. Not modified. * @return error between the two images. */ public static double meanDiffSq(GrayS64 imgA, GrayS64 imgB ) { InputSanityCheck.checkSameShape(imgA,imgB); return meanDiffSq(imgA.data,imgA.startIndex,imgA.stride, imgB.data,imgB.startIndex,imgB.stride, imgA.height, imgA.width); } /** *

Computes the mean squared error (MSE) between the two images.

* * @param imgA first image. Not modified. * @param imgB second image. Not modified. * @return error between the two images. */ public static double meanDiffSq(InterleavedS64 imgA, InterleavedS64 imgB ) { InputSanityCheck.checkSameShape(imgA,imgB); return meanDiffSq(imgA.data,imgA.startIndex,imgA.stride, imgB.data,imgB.startIndex,imgB.stride, imgA.height, imgA.width*imgA.numBands); } private static double meanDiffSq(long []dataA, int startIndexA , int strideA, long []dataB, int startIndexB , int strideB, int rows , int columns ) { long total = 0; for (int y = 0; y < rows; y++) { int indexA = startIndexA + y * strideA; int indexB = startIndexB + y * strideB; int indexEnd = indexA+columns; for (; indexA < indexEnd; indexA++,indexB++) { long difference = (dataA[indexA])-(dataB[indexB]); total += difference*difference; } } return total / (double)(rows*columns); } /** *

Computes the mean of absolute value error between the two images.

* * @param imgA first image. Not modified. * @param imgB second image. Not modified. * @return error between the two images. */ public static double meanDiffAbs(GrayS64 imgA, GrayS64 imgB ) { InputSanityCheck.checkSameShape(imgA,imgB); return meanDiffAbs(imgA.data,imgA.startIndex,imgA.stride, imgB.data,imgB.startIndex,imgB.stride, imgA.height, imgA.width); } /** *

Computes the mean of absolute value error between the two images.

* * @param imgA first image. Not modified. * @param imgB second image. Not modified. * @return error between the two images. */ public static double meanDiffAbs(InterleavedS64 imgA, InterleavedS64 imgB ) { InputSanityCheck.checkSameShape(imgA,imgB); return meanDiffAbs(imgA.data,imgA.startIndex,imgA.stride, imgB.data,imgB.startIndex,imgB.stride, imgA.height, imgA.width*imgA.numBands); } private static double meanDiffAbs(long []dataA, int startIndexA , int strideA, long []dataB, int startIndexB , int strideB, int rows , int columns ) { long total = 0; for (int y = 0; y < rows; y++) { int indexA = startIndexA + y * strideA; int indexB = startIndexB + y * strideB; int indexEnd = indexA+columns; for (; indexA < indexEnd; indexA++,indexB++) { long difference = (dataA[indexA])-(dataB[indexB]); total += Math.abs(difference); } } return total / (double)(rows*columns); } /** *

* Returns the sum of all the pixels in the image. *

* * @param img Input image. Not modified. */ public static long sum( GrayS64 img ) { final int rows = img.height; final int columns = img.width; long total = 0; for (int y = 0; y < rows; y++) { int index = img.startIndex + y * img.stride; int indexEnd = index+columns; for (; index < indexEnd; index++ ) { total += img.data[index] ; } } return total; } /** * Returns the mean pixel intensity value. * * @param img Input image. Not modified. * @return Mean pixel intensity value */ public static double mean( GrayS64 img ) { return sum(img)/(double)(img.width*img.height); } /** *

* Returns the sum of all the pixels in the image. *

* * @param img Input image. Not modified. */ public static long sum( InterleavedS64 img ) { final int rows = img.height; final int columns = img.width*img.numBands; long total = 0; for (int y = 0; y < rows; y++) { int index = img.startIndex + y * img.stride; int indexEnd = index+columns; for (; index < indexEnd; index++ ) { total += img.data[index] ; } } return total; } /** * Returns the mean pixel intensity value. * * @param img Input image. Not modified. * @return Mean pixel intensity value */ public static double mean( InterleavedS64 img ) { return sum(img)/(double)(img.width*img.height*img.numBands); } /** * Computes the variance of pixel intensity values inside the image. * * @param img Input image. Not modified. * @param mean Mean pixel intensity value. * @return Pixel variance */ public static double variance(GrayS64 img , double mean ) { double variance = 0; for (int y = 0; y < img.height; y++) { int index = img.getStartIndex() + y * img.getStride(); int indexEnd = index+img.width; // for(int x = 0; x < img.width; x++ ) { for (; index < indexEnd; index++ ) { double d = (img.data[index]) - mean; variance += d*d; } } return variance/(img.width*img.height); } /** * Computes the histogram of intensity values for the image. * * @param input (input) Image. * @param minValue (input) Minimum possible intensity value * @param histogram (output) Storage for histogram. Number of elements must be equal to max value. */ public static void histogram(GrayS64 input , int minValue , int histogram[] ) { for( int i = 0; i < histogram.length; i++ ) histogram[i] = 0; for( int y = 0; y < input.height; y++ ) { int index = input.startIndex + y*input.stride; int end = index + input.width; for( ; index < end; index++ ) { // floor value. just convert to int rounds towards zero histogram[(int)input.data[index] - minValue]++; } } } /** * Returns the minimum element value. * * @param input Input image. Not modified. * @return Minimum pixel value. */ public static float min( GrayF32 input ) { return min( input.data, input.startIndex, input.height, input.width , input.stride ); } /** * Returns the minimum element value. * * @param input Input image. Not modified. * @return Minimum pixel value. */ public static float min( InterleavedF32 input ) { return min( input.data, input.startIndex, input.height, input.width*input.numBands , input.stride ); } private static float min( float[] array , int startIndex , int rows , int columns , int stride ) { float output = array[startIndex]; for( int y = 0; y < rows; y++ ) { int index = startIndex + y*stride; int end = index + columns; for( ; index < end; index++ ) { float v = array[index] ; if( v < output ) output = v; } } return output; } /** * Returns the maximum element value. * * @param input Input image. Not modified. * @return Maximum pixel value. */ public static float max( GrayF32 input ) { return max( input.data, input.startIndex, input.height, input.width , input.stride ); } /** * Returns the maximum element value. * * @param input Input image. Not modified. * @return Maximum pixel value. */ public static float max( InterleavedF32 input ) { return max( input.data, input.startIndex, input.height, input.width*input.numBands , input.stride ); } private static float max( float[] array , int startIndex , int rows , int columns , int stride ) { float output = array[startIndex]; for( int y = 0; y < rows; y++ ) { int index = startIndex + y*stride; int end = index + columns; for( ; index < end; index++ ) { float v = array[index] ; if( v > output ) output = v; } } return output; } /** * Returns the maximum element value. * * @param input Input image. Not modified. * @return Maximum pixel value. */ public static float maxAbs( GrayF32 input ) { return maxAbs( input.data, input.startIndex, input.height, input.width , input.stride ); } /** * Returns the maximum element value. * * @param input Input image. Not modified. * @return Maximum pixel value. */ public static float maxAbs( InterleavedF32 input ) { return maxAbs( input.data, input.startIndex, input.height, input.width*input.numBands , input.stride ); } private static float maxAbs( float[] array , int startIndex , int rows , int columns , int stride ) { float output = array[startIndex]; for( int y = 0; y < rows; y++ ) { int index = startIndex + y*stride; int end = index + columns; for( ; index < end; index++ ) { float v = Math.abs(array[index]); if( v > output ) output = v; } } return output; } /** *

Computes the mean squared error (MSE) between the two images.

* * @param imgA first image. Not modified. * @param imgB second image. Not modified. * @return error between the two images. */ public static double meanDiffSq(GrayF32 imgA, GrayF32 imgB ) { InputSanityCheck.checkSameShape(imgA,imgB); return meanDiffSq(imgA.data,imgA.startIndex,imgA.stride, imgB.data,imgB.startIndex,imgB.stride, imgA.height, imgA.width); } /** *

Computes the mean squared error (MSE) between the two images.

* * @param imgA first image. Not modified. * @param imgB second image. Not modified. * @return error between the two images. */ public static double meanDiffSq(InterleavedF32 imgA, InterleavedF32 imgB ) { InputSanityCheck.checkSameShape(imgA,imgB); return meanDiffSq(imgA.data,imgA.startIndex,imgA.stride, imgB.data,imgB.startIndex,imgB.stride, imgA.height, imgA.width*imgA.numBands); } private static double meanDiffSq(float []dataA, int startIndexA , int strideA, float []dataB, int startIndexB , int strideB, int rows , int columns ) { float total = 0; for (int y = 0; y < rows; y++) { int indexA = startIndexA + y * strideA; int indexB = startIndexB + y * strideB; int indexEnd = indexA+columns; for (; indexA < indexEnd; indexA++,indexB++) { float difference = (dataA[indexA])-(dataB[indexB]); total += difference*difference; } } return total / (double)(rows*columns); } /** *

Computes the mean of absolute value error between the two images.

* * @param imgA first image. Not modified. * @param imgB second image. Not modified. * @return error between the two images. */ public static double meanDiffAbs(GrayF32 imgA, GrayF32 imgB ) { InputSanityCheck.checkSameShape(imgA,imgB); return meanDiffAbs(imgA.data,imgA.startIndex,imgA.stride, imgB.data,imgB.startIndex,imgB.stride, imgA.height, imgA.width); } /** *

Computes the mean of absolute value error between the two images.

* * @param imgA first image. Not modified. * @param imgB second image. Not modified. * @return error between the two images. */ public static double meanDiffAbs(InterleavedF32 imgA, InterleavedF32 imgB ) { InputSanityCheck.checkSameShape(imgA,imgB); return meanDiffAbs(imgA.data,imgA.startIndex,imgA.stride, imgB.data,imgB.startIndex,imgB.stride, imgA.height, imgA.width*imgA.numBands); } private static double meanDiffAbs(float []dataA, int startIndexA , int strideA, float []dataB, int startIndexB , int strideB, int rows , int columns ) { float total = 0; for (int y = 0; y < rows; y++) { int indexA = startIndexA + y * strideA; int indexB = startIndexB + y * strideB; int indexEnd = indexA+columns; for (; indexA < indexEnd; indexA++,indexB++) { float difference = (dataA[indexA])-(dataB[indexB]); total += Math.abs(difference); } } return total / (double)(rows*columns); } /** *

* Returns the sum of all the pixels in the image. *

* * @param img Input image. Not modified. */ public static float sum( GrayF32 img ) { final int rows = img.height; final int columns = img.width; float total = 0; for (int y = 0; y < rows; y++) { int index = img.startIndex + y * img.stride; int indexEnd = index+columns; for (; index < indexEnd; index++ ) { total += img.data[index] ; } } return total; } /** * Returns the mean pixel intensity value. * * @param img Input image. Not modified. * @return Mean pixel intensity value */ public static double mean( GrayF32 img ) { return sum(img)/(double)(img.width*img.height); } /** *

* Returns the sum of all the pixels in the image. *

* * @param img Input image. Not modified. */ public static float sum( InterleavedF32 img ) { final int rows = img.height; final int columns = img.width*img.numBands; float total = 0; for (int y = 0; y < rows; y++) { int index = img.startIndex + y * img.stride; int indexEnd = index+columns; for (; index < indexEnd; index++ ) { total += img.data[index] ; } } return total; } /** * Returns the mean pixel intensity value. * * @param img Input image. Not modified. * @return Mean pixel intensity value */ public static double mean( InterleavedF32 img ) { return sum(img)/(double)(img.width*img.height*img.numBands); } /** * Computes the variance of pixel intensity values inside the image. * * @param img Input image. Not modified. * @param mean Mean pixel intensity value. * @return Pixel variance */ public static double variance(GrayF32 img , double mean ) { double variance = 0; for (int y = 0; y < img.height; y++) { int index = img.getStartIndex() + y * img.getStride(); int indexEnd = index+img.width; // for(int x = 0; x < img.width; x++ ) { for (; index < indexEnd; index++ ) { double d = (img.data[index]) - mean; variance += d*d; } } return variance/(img.width*img.height); } /** * Computes the histogram of intensity values for the image. * * @param input (input) Image. * @param minValue (input) Minimum possible intensity value * @param histogram (output) Storage for histogram. Number of elements must be equal to max value. */ public static void histogram(GrayF32 input , int minValue , int histogram[] ) { for( int i = 0; i < histogram.length; i++ ) histogram[i] = 0; for( int y = 0; y < input.height; y++ ) { int index = input.startIndex + y*input.stride; int end = index + input.width; for( ; index < end; index++ ) { // floor value. just convert to int rounds towards zero histogram[(int)input.data[index] - minValue ]++; } } } /** * Returns the minimum element value. * * @param input Input image. Not modified. * @return Minimum pixel value. */ public static double min( GrayF64 input ) { return min( input.data, input.startIndex, input.height, input.width , input.stride ); } /** * Returns the minimum element value. * * @param input Input image. Not modified. * @return Minimum pixel value. */ public static double min( InterleavedF64 input ) { return min( input.data, input.startIndex, input.height, input.width*input.numBands , input.stride ); } private static double min( double[] array , int startIndex , int rows , int columns , int stride ) { double output = array[startIndex]; for( int y = 0; y < rows; y++ ) { int index = startIndex + y*stride; int end = index + columns; for( ; index < end; index++ ) { double v = array[index] ; if( v < output ) output = v; } } return output; } /** * Returns the maximum element value. * * @param input Input image. Not modified. * @return Maximum pixel value. */ public static double max( GrayF64 input ) { return max( input.data, input.startIndex, input.height, input.width , input.stride ); } /** * Returns the maximum element value. * * @param input Input image. Not modified. * @return Maximum pixel value. */ public static double max( InterleavedF64 input ) { return max( input.data, input.startIndex, input.height, input.width*input.numBands , input.stride ); } private static double max( double[] array , int startIndex , int rows , int columns , int stride ) { double output = array[startIndex]; for( int y = 0; y < rows; y++ ) { int index = startIndex + y*stride; int end = index + columns; for( ; index < end; index++ ) { double v = array[index] ; if( v > output ) output = v; } } return output; } /** * Returns the maximum element value. * * @param input Input image. Not modified. * @return Maximum pixel value. */ public static double maxAbs( GrayF64 input ) { return maxAbs( input.data, input.startIndex, input.height, input.width , input.stride ); } /** * Returns the maximum element value. * * @param input Input image. Not modified. * @return Maximum pixel value. */ public static double maxAbs( InterleavedF64 input ) { return maxAbs( input.data, input.startIndex, input.height, input.width*input.numBands , input.stride ); } private static double maxAbs( double[] array , int startIndex , int rows , int columns , int stride ) { double output = array[startIndex]; for( int y = 0; y < rows; y++ ) { int index = startIndex + y*stride; int end = index + columns; for( ; index < end; index++ ) { double v = Math.abs(array[index]); if( v > output ) output = v; } } return output; } /** *

Computes the mean squared error (MSE) between the two images.

* * @param imgA first image. Not modified. * @param imgB second image. Not modified. * @return error between the two images. */ public static double meanDiffSq(GrayF64 imgA, GrayF64 imgB ) { InputSanityCheck.checkSameShape(imgA,imgB); return meanDiffSq(imgA.data,imgA.startIndex,imgA.stride, imgB.data,imgB.startIndex,imgB.stride, imgA.height, imgA.width); } /** *

Computes the mean squared error (MSE) between the two images.

* * @param imgA first image. Not modified. * @param imgB second image. Not modified. * @return error between the two images. */ public static double meanDiffSq(InterleavedF64 imgA, InterleavedF64 imgB ) { InputSanityCheck.checkSameShape(imgA,imgB); return meanDiffSq(imgA.data,imgA.startIndex,imgA.stride, imgB.data,imgB.startIndex,imgB.stride, imgA.height, imgA.width*imgA.numBands); } private static double meanDiffSq(double []dataA, int startIndexA , int strideA, double []dataB, int startIndexB , int strideB, int rows , int columns ) { double total = 0; for (int y = 0; y < rows; y++) { int indexA = startIndexA + y * strideA; int indexB = startIndexB + y * strideB; int indexEnd = indexA+columns; for (; indexA < indexEnd; indexA++,indexB++) { double difference = (dataA[indexA])-(dataB[indexB]); total += difference*difference; } } return total / (double)(rows*columns); } /** *

Computes the mean of absolute value error between the two images.

* * @param imgA first image. Not modified. * @param imgB second image. Not modified. * @return error between the two images. */ public static double meanDiffAbs(GrayF64 imgA, GrayF64 imgB ) { InputSanityCheck.checkSameShape(imgA,imgB); return meanDiffAbs(imgA.data,imgA.startIndex,imgA.stride, imgB.data,imgB.startIndex,imgB.stride, imgA.height, imgA.width); } /** *

Computes the mean of absolute value error between the two images.

* * @param imgA first image. Not modified. * @param imgB second image. Not modified. * @return error between the two images. */ public static double meanDiffAbs(InterleavedF64 imgA, InterleavedF64 imgB ) { InputSanityCheck.checkSameShape(imgA,imgB); return meanDiffAbs(imgA.data,imgA.startIndex,imgA.stride, imgB.data,imgB.startIndex,imgB.stride, imgA.height, imgA.width*imgA.numBands); } private static double meanDiffAbs(double []dataA, int startIndexA , int strideA, double []dataB, int startIndexB , int strideB, int rows , int columns ) { double total = 0; for (int y = 0; y < rows; y++) { int indexA = startIndexA + y * strideA; int indexB = startIndexB + y * strideB; int indexEnd = indexA+columns; for (; indexA < indexEnd; indexA++,indexB++) { double difference = (dataA[indexA])-(dataB[indexB]); total += Math.abs(difference); } } return total / (double)(rows*columns); } /** *

* Returns the sum of all the pixels in the image. *

* * @param img Input image. Not modified. */ public static double sum( GrayF64 img ) { final int rows = img.height; final int columns = img.width; double total = 0; for (int y = 0; y < rows; y++) { int index = img.startIndex + y * img.stride; int indexEnd = index+columns; for (; index < indexEnd; index++ ) { total += img.data[index] ; } } return total; } /** * Returns the mean pixel intensity value. * * @param img Input image. Not modified. * @return Mean pixel intensity value */ public static double mean( GrayF64 img ) { return sum(img)/(double)(img.width*img.height); } /** *

* Returns the sum of all the pixels in the image. *

* * @param img Input image. Not modified. */ public static double sum( InterleavedF64 img ) { final int rows = img.height; final int columns = img.width*img.numBands; double total = 0; for (int y = 0; y < rows; y++) { int index = img.startIndex + y * img.stride; int indexEnd = index+columns; for (; index < indexEnd; index++ ) { total += img.data[index] ; } } return total; } /** * Returns the mean pixel intensity value. * * @param img Input image. Not modified. * @return Mean pixel intensity value */ public static double mean( InterleavedF64 img ) { return sum(img)/(double)(img.width*img.height*img.numBands); } /** * Computes the variance of pixel intensity values inside the image. * * @param img Input image. Not modified. * @param mean Mean pixel intensity value. * @return Pixel variance */ public static double variance(GrayF64 img , double mean ) { double variance = 0; for (int y = 0; y < img.height; y++) { int index = img.getStartIndex() + y * img.getStride(); int indexEnd = index+img.width; // for(int x = 0; x < img.width; x++ ) { for (; index < indexEnd; index++ ) { double d = (img.data[index]) - mean; variance += d*d; } } return variance/(img.width*img.height); } /** * Computes the histogram of intensity values for the image. * * @param input (input) Image. * @param minValue (input) Minimum possible intensity value * @param histogram (output) Storage for histogram. Number of elements must be equal to max value. */ public static void histogram(GrayF64 input , int minValue , int histogram[] ) { for( int i = 0; i < histogram.length; i++ ) histogram[i] = 0; for( int y = 0; y < input.height; y++ ) { int index = input.startIndex + y*input.stride; int end = index + input.width; for( ; index < end; index++ ) { // floor value. just convert to int rounds towards zero histogram[(int)input.data[index] - minValue ]++; } } } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy