boofcv.alg.transform.ii.DerivativeIntegralImage Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of ip Show documentation
Show all versions of ip Show documentation
BoofCV is an open source Java library for real-time computer vision and robotics applications.
/*
* Copyright (c) 2011-2016, Peter Abeles. All Rights Reserved.
*
* This file is part of BoofCV (http://boofcv.org).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package boofcv.alg.transform.ii;
import boofcv.struct.image.GrayF32;
/**
* @author Peter Abeles
*/
public class DerivativeIntegralImage {
/**
* Creates a kernel for a symmetric box derivative.
*
* @param r Radius of the box. width is 2*r+1
* @return Kernel Kernel for derivative.
*/
public static IntegralKernel kernelDerivX( int r , IntegralKernel ret ) {
if( ret == null )
ret = new IntegralKernel(2);
ret.blocks[0].set(-r-1,-r-1,-1,r);
ret.blocks[1].set(0,-r-1,r,r);
ret.scales[0] = -1;
ret.scales[1] = 1;
return ret;
}
/**
* Creates a kernel for a symmetric box derivative.
*
* @param r Radius of the box. width is 2*r+1
* @return Kernel Kernel for derivative.
*/
public static IntegralKernel kernelDerivY( int r , IntegralKernel ret ) {
if( ret == null )
ret = new IntegralKernel(2);
ret.blocks[0].set(-r-1,-r-1,r,-1);
ret.blocks[1].set(-r-1,0,r,r);
ret.scales[0] = -1;
ret.scales[1] = 1;
return ret;
}
/**
* Creates a kernel for the Haar wavelet "centered" around the target pixel.
*
* @param r Radius of the box. width is 2*r
* @return Kernel for a Haar x-axis wavelet.
*/
public static IntegralKernel kernelHaarX( int r , IntegralKernel ret) {
if( ret == null )
ret = new IntegralKernel(2);
ret.blocks[0].set(-r, -r, 0, r);
ret.blocks[1].set(0,-r,r,r);
ret.scales[0] = -1;
ret.scales[1] = 1;
return ret;
}
/**
* Creates a kernel for the Haar wavelet "centered" around the target pixel.
*
* @param r Radius of the box. width is 2*r
* @return Kernel for a Haar y-axis wavelet.
*/
public static IntegralKernel kernelHaarY( int r , IntegralKernel ret) {
if( ret == null )
ret = new IntegralKernel(2);
ret.blocks[0].set(-r,-r,r,0);
ret.blocks[1].set(-r,0,r,r);
ret.scales[0] = -1;
ret.scales[1] = 1;
return ret;
}
public static IntegralKernel kernelDerivXX( int size , IntegralKernel ret ) {
if( ret == null )
ret = new IntegralKernel(2);
// lobe size
int blockW = size/3;
// horizontal band size
int blockH = size-blockW-1;
int r1 = blockW/2;
int r2 = blockW+r1;
int r3 = blockH/2;
ret.blocks[0].set(-r2-1,-r3-1,r2,r3);
ret.blocks[1].set(-r1 - 1, -r3 - 1, r1, r3);
ret.scales[0] = 1;
ret.scales[1] = -3;
return ret;
}
public static IntegralKernel kernelDerivYY( int size , IntegralKernel ret ) {
if( ret == null )
ret = new IntegralKernel(2);
int blockW = size/3;
int blockH = size-blockW-1;
int r1 = blockW/2;
int r2 = blockW+r1;
int r3 = blockH/2;
ret.blocks[0].set(-r3-1,-r2-1,r3,r2);
ret.blocks[1].set(-r3-1,-r1-1,r3,r1);
ret.scales[0] = 1;
ret.scales[1] = -3;
return ret;
}
public static IntegralKernel kernelDerivXY( int size , IntegralKernel ret ) {
if( ret == null )
ret = new IntegralKernel(4);
int block = size/3;
ret.blocks[0].set(-block-1,-block-1,-1,-1);
ret.blocks[1].set(0,-block-1,block,-1);
ret.blocks[2].set(0, 0, block, block);
ret.blocks[3].set(-block-1,0,-1,block);
ret.scales[0] = 1;
ret.scales[1] = -1;
ret.scales[2] = 1;
ret.scales[3] = -1;
return ret;
}
public static void derivXX(GrayF32 input , GrayF32 output , int size )
{
int blockW = size/3;
int blockH = size-blockW-1;
int radiusW = size/2;
int radiusH = blockH/2;
int blockW2 = 2*blockW;
int blockW3 = 3*blockW;
int endY = input.height - radiusH;
int endX = input.width - radiusW;
for( int y = radiusH+1; y < endY; y++ ) {
int indexTop = input.startIndex + (y-radiusH-1)*input.stride;
int indexBottom = indexTop + (blockH)*input.stride;
int indexDst = output.startIndex + y*output.stride+radiusW+1;
for( int x = radiusW+1; x < endX; x++ , indexTop++,indexBottom++,indexDst++) {
float sum = input.data[indexBottom+blockW3] - input.data[indexTop+blockW3] - input.data[indexBottom] + input.data[indexTop];
sum -= 3*(input.data[indexBottom+blockW2] - input.data[indexTop+blockW2] - input.data[indexBottom+blockW] + input.data[indexTop+blockW]);
output.data[indexDst] = sum;
}
}
}
public static void derivYY(GrayF32 input , GrayF32 output , int size )
{
int blockH = size/3;
int blockW = size-blockH-1;
int radiusH = size/2;
int radiusW = blockW/2;
int rowOff1 = blockH*input.stride;
int rowOff2 = 2*rowOff1;
int rowOff3 = 3*rowOff1;
int endY = input.height - radiusH;
int endX = input.width - radiusW;
for( int y = radiusH+1; y < endY; y++ ) {
int indexL = input.startIndex + (y-radiusH-1)*input.stride;
int indexR = indexL + blockW;
int indexDst = output.startIndex + y*output.stride+radiusW+1;
for( int x = radiusW+1; x < endX; x++ , indexL++,indexR++,indexDst++) {
float sum = input.data[indexR+rowOff3] - input.data[indexL+rowOff3] - input.data[indexR] + input.data[indexL];
sum -= 3*(input.data[indexR+rowOff2] - input.data[indexL+rowOff2] - input.data[indexR+rowOff1] + input.data[indexL+rowOff1]);
output.data[indexDst] = sum;
}
}
}
public static void derivXY(GrayF32 input , GrayF32 output , int size )
{
int block = size/3;
int endY = input.height - block;
int endX = input.width - block;
for( int y = block+1; y < endY; y++ ) {
int indexY1 = input.startIndex + (y-block-1)*input.stride;
int indexY2 = indexY1 + block*input.stride;
int indexY3 = indexY2 + input.stride;
int indexY4 = indexY3 + block*input.stride;
int indexDst = output.startIndex + y*output.stride+block+1;
for( int x = block+1; x < endX; x++ , indexY1++,indexY2++,indexY3++,indexY4++,indexDst++) {
int x3 = block+1;
int x4 = x3+block;
float sum = input.data[indexY2+block] - input.data[indexY1+block] - input.data[indexY2] + input.data[indexY1];
sum -= input.data[indexY2+x4] - input.data[indexY1+x4] - input.data[indexY2+x3] + input.data[indexY1+x3];
sum += input.data[indexY4+x4] - input.data[indexY3+x4] - input.data[indexY4+x3] + input.data[indexY3+x3];
sum -= input.data[indexY4+block] - input.data[indexY3+block] - input.data[indexY4] + input.data[indexY3];
output.data[indexDst] = sum;
}
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy