boofcv.alg.transform.pyramid.PyramidFloatGaussianScale Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of ip Show documentation
Show all versions of ip Show documentation
BoofCV is an open source Java library for real-time computer vision and robotics applications.
/*
* Copyright (c) 2011-2016, Peter Abeles. All Rights Reserved.
*
* This file is part of BoofCV (http://boofcv.org).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package boofcv.alg.transform.pyramid;
import boofcv.abst.filter.blur.BlurStorageFilter;
import boofcv.alg.distort.DistortImageOps;
import boofcv.alg.distort.PixelTransformAffine_F32;
import boofcv.alg.distort.impl.DistortSupport;
import boofcv.alg.interpolate.InterpolatePixelS;
import boofcv.factory.filter.blur.FactoryBlurFilter;
import boofcv.struct.image.ImageGray;
import boofcv.struct.pyramid.PyramidFloat;
/**
*
* {@link PyramidFloat} in which each layer is constructed by 1) applying Gaussian blur to the previous layer, and then
* 2) re-sampling the blurred previous layer. The scaling factor between each level are floating point number.
* Unlike {@link PyramidDiscreteSampleBlur } the scale factors can be arbitrary and are not limited to certain integer
* values. The specified sigmas are the sigmas which are applied to each layer.
*
*
*
* NOTE: This can be considered the theoretically correct way to construct an image pyramid
* with no sacrifices to improve speed.
*
*
* @author Peter Abeles
*/
@SuppressWarnings({"unchecked"})
public class PyramidFloatGaussianScale< T extends ImageGray> extends PyramidFloat {
// interpolation algorithm
protected InterpolatePixelS interpolate;
// used to store the blurred image
protected T tempImage;
// how much each layer is blurred before sub-sampling
protected float[] sigmaLayers;
// The effective amount of blur in each pyramid layer relative to the input image
protected double[] sigma;
/**
* Configures the pyramid
*
* @param interpolate Interpolation function used to sub-sample.
* @param scales Scales of each layer in the pyramid relative to the input image
* @param sigmaLayers Amount of blur applied to the previous layer while constructing the pyramid.
* @param imageType Type of image it's processing
*/
public PyramidFloatGaussianScale(InterpolatePixelS interpolate, double scales[], double sigmaLayers[],
Class imageType) {
super(imageType, scales);
if( scales.length != sigmaLayers.length )
throw new IllegalArgumentException("Number of scales and sigmas must be the same");
this.interpolate = interpolate;
this.sigmaLayers = new float[ sigmaLayers.length ];
for( int i = 0; i < sigmaLayers.length; i++ )
this.sigmaLayers[i] = (float) sigmaLayers[i];
sigma = new double[ sigmaLayers.length ];
sigma[0] = sigmaLayers[0];
for( int i = 1; i < scales.length; i++ ) {
// the effective blur sigma which is being applied
double effectiveSigma = sigmaLayers[i]*scales[i-1];
sigma[i] = Math.sqrt(sigma[i-1]*sigma[i-1] + effectiveSigma*effectiveSigma);
}
}
@Override
public void process(T input) {
super.initialize(input.width,input.height);
if( isSaveOriginalReference() )
throw new IllegalArgumentException("The original reference cannot be saved");
if( tempImage == null ) {
tempImage = (T)input._createNew(input.width,input.height);
}
for( int i = 0; i < scale.length; i++ ) {
T prev = i == 0 ? input : getLayer(i-1);
T layer = getLayer(i);
// Apply the requested blur to the previous layer
BlurStorageFilter blur = (BlurStorageFilter) FactoryBlurFilter.gaussian(layer.getClass(), sigmaLayers[i],-1);
tempImage.reshape(prev.width,prev.height);
blur.process(prev,tempImage);
// Resample the blurred image
if( scale[i] == 1 ) {
layer.setTo(tempImage);
} else {
PixelTransformAffine_F32 model = DistortSupport.transformScale(layer,tempImage, null);
DistortImageOps.distortSingle(tempImage,layer, true, model,interpolate);
}
}
}
public InterpolatePixelS getInterpolate() {
return interpolate;
}
public void setInterpolate(InterpolatePixelS interpolate) {
this.interpolate = interpolate;
}
@Override
public double getSampleOffset(int layer) {
return 0;
}
@Override
public double getSigma(int layer) {
return sigma[layer];
}
public float[] getSigmaLayers() {
return sigmaLayers;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy