boofcv.factory.transform.pyramid.FactoryPyramid Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of ip Show documentation
Show all versions of ip Show documentation
BoofCV is an open source Java library for real-time computer vision and robotics applications.
/*
* Copyright (c) 2011-2016, Peter Abeles. All Rights Reserved.
*
* This file is part of BoofCV (http://boofcv.org).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package boofcv.factory.transform.pyramid;
import boofcv.alg.interpolate.InterpolatePixelS;
import boofcv.alg.transform.pyramid.PyramidDiscreteSampleBlur;
import boofcv.alg.transform.pyramid.PyramidFloatGaussianScale;
import boofcv.core.image.border.BorderType;
import boofcv.factory.filter.kernel.FactoryKernel;
import boofcv.factory.filter.kernel.FactoryKernelGaussian;
import boofcv.factory.interpolate.FactoryInterpolation;
import boofcv.struct.convolve.Kernel1D;
import boofcv.struct.image.ImageGray;
import boofcv.struct.pyramid.PyramidDiscrete;
import boofcv.struct.pyramid.PyramidFloat;
/**
* Factory for creating classes related to image pyramids.
*
* @author Peter Abeles
*/
public class FactoryPyramid {
/**
* Creates an updater for discrete pyramids where a Gaussian is convolved across the input
* prior to sub-sampling.
*
* @param imageType Type of input image.
* @param sigma Gaussian sigma. If < 0 then a sigma is selected using the radius. Try -1.
* @param radius Radius of the Gaussian kernel. If < 0 then the radius is selected using sigma. Try 2.
* @return PyramidDiscrete
*/
public static
PyramidDiscrete discreteGaussian( int[] scaleFactors , double sigma , int radius ,
boolean saveOriginalReference, Class imageType )
{
Class kernelType = FactoryKernel.getKernelType(imageType,1);
Kernel1D kernel = FactoryKernelGaussian.gaussian(kernelType,sigma,radius);
return new PyramidDiscreteSampleBlur(kernel,sigma,imageType,saveOriginalReference,scaleFactors);
}
/**
* Creates a float pyramid where each layer is blurred using a Gaussian with the specified
* sigma. Bilinear interpolation is used when sub-sampling.
*
* @param scaleFactors The scale factor of each layer relative to the previous layer.
* Layer 0 is relative to the input image.
* @param sigmas Gaussian blur magnitude for each layer.
* @param imageType Type of image in the pyramid.
* @return PyramidFloat
*/
public static
PyramidFloat floatGaussian( double scaleFactors[], double []sigmas , Class imageType ) {
InterpolatePixelS interp = FactoryInterpolation.bilinearPixelS(imageType, BorderType.EXTENDED);
return new PyramidFloatGaussianScale(interp,scaleFactors,sigmas,imageType);
}
/**
* Constructs an image pyramid which is designed to mimic a {@link boofcv.struct.gss.GaussianScaleSpace}. Each layer in the pyramid
* should have the equivalent amount of blur that a space-space constructed with the same parameters would have.
*
* @param scaleSpace The scale of each layer and the desired amount of blur relative to the original image
* @param imageType Type of image
* @return PyramidFloat
*/
public static
PyramidFloat scaleSpacePyramid( double scaleSpace[], Class imageType ) {
double[] sigmas = new double[ scaleSpace.length ];
sigmas[0] = scaleSpace[0];
for( int i = 1; i < scaleSpace.length; i++ ) {
// the desired amount of blur
double c = scaleSpace[i];
// the effective amount of blur applied to the last level
double b = scaleSpace[i-1];
// the amount of additional blur which is needed
sigmas[i] = Math.sqrt(c*c-b*b);
// take in account the change in image scale
sigmas[i] /= scaleSpace[i-1];
}
return floatGaussian(scaleSpace,sigmas,imageType);
}
/**
* Constructs a scale-space image pyramid. Each layer in the pyramid is the same size as the input image but
* has a different amount of blur applied to it.
*
* @param scaleSpace Amount of blur applied to each layer in the pyramid relative to the input image.
* @param imageType Type of image
* @param Type of image
* @return Scale-space image pyramid
*/
public static
PyramidFloat scaleSpace( double scaleSpace[], Class imageType ) {
double[] scaleFactors = new double[ scaleSpace.length ];
for( int i = 0; i < scaleSpace.length; i++ ) {
scaleFactors[i] = 1;
}
// find the amount of blue that it needs to apply at each layer
double[] sigmas = new double[ scaleSpace.length ];
sigmas[0] = scaleSpace[0];
for( int i = 1; i < scaleSpace.length; i++ ) {
// the desired amount of blur
double c = scaleSpace[i];
// the effective amount of blur applied to the last level
double b = scaleSpace[i-1];
// the amount of additional blur which is needed
sigmas[i] = Math.sqrt(c*c-b*b);
}
return floatGaussian(scaleFactors,sigmas,imageType);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy