
boofcv.struct.learning.ClassificationHistogram Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of learning Show documentation
Show all versions of learning Show documentation
BoofCV is an open source Java library for real-time computer vision and robotics applications.
The newest version!
/*
* Copyright (c) 2011-2015, Peter Abeles. All Rights Reserved.
*
* This file is part of BoofCV (http://boofcv.org).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package boofcv.struct.learning;
import java.util.Arrays;
/**
* Used create a histogram of actual to predicted classification. This will be a NxN matrix. This can
* then be converted into a confusion matrix. Rows are actual type and columns is the predicted type.
*
* @author Peter Abeles
*/
public class ClassificationHistogram {
int results[];
int numTypes;
public ClassificationHistogram(int numTypes) {
results = new int[ numTypes*numTypes ];
this.numTypes = numTypes;
}
public void reset() {
Arrays.fill(results,0);
}
public void increment( int actual , int predicted ) {
results[actual*numTypes + predicted]++;
}
public Confusion createConfusion() {
Confusion confusion = new Confusion(numTypes);
for (int i = 0; i < numTypes; i++) {
int totalActual = 0;
for (int j = 0; j < numTypes; j++) {
totalActual += get(i,j);
}
confusion.actualCounts[i] = totalActual;
for (int j = 0; j < numTypes; j++) {
double fraction = get(i,j)/(double)totalActual;
confusion.matrix.set(i, j, fraction);
}
}
return confusion;
}
public int get( int actual , int predicted ) {
return results[actual*numTypes + predicted];
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy