All Downloads are FREE. Search and download functionalities are using the official Maven repository.

boofcv.alg.geo.pose.PnPStereoEstimator Maven / Gradle / Ivy

Go to download

BoofCV is an open source Java library for real-time computer vision and robotics applications.

There is a newer version: 0.26
Show newest version
/*
 * Copyright (c) 2011-2013, Peter Abeles. All Rights Reserved.
 *
 * This file is part of BoofCV (http://boofcv.org).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package boofcv.alg.geo.pose;

import boofcv.struct.geo.GeoModelEstimator1;
import boofcv.struct.geo.GeoModelEstimatorN;
import boofcv.struct.geo.Point2D3D;
import boofcv.struct.sfm.Stereo2D3D;
import georegression.struct.se.Se3_F64;
import org.ddogleg.fitting.modelset.DistanceFromModel;
import org.ddogleg.struct.FastQueue;

import java.util.List;

/**
 * Computes the left camera pose from a fully calibrated stereo camera system using a PnP algorithm.  Observations
 * from the left camera are used to solve the PnP problem while observations from the right camera are used to
 * select the best solution if its ambiguous.
 *
 * Observations past the minimum number are used just for selecting the best hypothesis.
 *
 * @author Peter Abeles
 */
public class PnPStereoEstimator implements GeoModelEstimator1 {
	// PnP pose estimator
	private GeoModelEstimatorN alg;
	// Used to resolve ambiguous solutions
	private DistanceFromModel distance;

	// Stereo observations converted into a monocular observation
	private FastQueue monoPoints = new FastQueue(10,Point2D3D.class,true);

	// known transform from left camera view into the right camera view
	private Se3_F64 leftToRight = new Se3_F64();

	// computed transform from worldToRight
	private Se3_F64 worldToRight = new Se3_F64();

	private FastQueue solutions = new FastQueue(4,Se3_F64.class,true);

	// extra observation used for testing solutions
	int extraForTest;

	/**
	 *
	 * @param alg
	 * @param distance
	 * @param extraForTest Right camera is used so zero is the minimum number
	 */
	public PnPStereoEstimator(GeoModelEstimatorN alg,
							  DistanceFromModel distance ,
							  int extraForTest ) {
		this.alg = alg;
		this.distance = distance;
		this.extraForTest = extraForTest;
	}

	public void setLeftToRight(Se3_F64 leftToRight) {
		this.leftToRight = leftToRight;
	}

	@Override
	public boolean process(List points, Se3_F64 estimatedModel) {
		int N = alg.getMinimumPoints();

		// create a list of observation from the left camera
		monoPoints.reset();
		for( int i = 0; i < N; i++ ) {
			Stereo2D3D s = points.get(i);
			Point2D3D p = monoPoints.grow();
			p.observation = s.leftObs;
			p.location = s.location;
		}

		// compute solutions
		solutions.reset();
		alg.process(monoPoints.toList(),solutions);

		// use one for temporary storage when computing distance
		Point2D3D p = monoPoints.get(0);
		
		// use observations from the left and right cameras to select the best solution
		Se3_F64 bestMotion = null;
		double bestError = Double.MAX_VALUE;
		for( int i = 0; i < solutions.size; i++ ) {
			Se3_F64 worldToLeft = solutions.data[i];

			double totalError = 0;

			// use extra observations from the left camera
			distance.setModel(worldToLeft);
			for( int j = N; j < points.size(); j++ ) {
				Stereo2D3D s = points.get(i);
				p.observation = s.leftObs;
				p.location = s.location;
				totalError += distance.computeDistance(p);
			}

			// Use all observations from the right camera
			worldToLeft.concat(leftToRight,worldToRight);
			distance.setModel(worldToRight);
			for( int j = 0; j < points.size(); j++ ) {
				Stereo2D3D s = points.get(j);
				p.observation = s.rightObs;
				p.location = s.location;
				totalError += distance.computeDistance(p);
			}

			if( totalError < bestError ) {
				bestError = totalError;
				bestMotion = worldToLeft;
			}
		}

		if( bestMotion == null )
			return false;

		estimatedModel.set(bestMotion);
		return true;
	}

	@Override
	public int getMinimumPoints() {
		return alg.getMinimumPoints() + extraForTest;
	}
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy