All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.bouncycastle.crypto.fips.CTRSP800DRBG Maven / Gradle / Ivy

Go to download

The FIPS 140-2 Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms certified to FIPS 140-2 level 1. This jar contains the debug version JCE provider and low-level API for the BC-FJA version 1.0.2.3, FIPS Certificate #3514. Please note the debug jar is not certified.

There is a newer version: 2.0.0
Show newest version
package org.bouncycastle.crypto.fips;

import java.util.HashMap;
import java.util.Map;

import org.bouncycastle.crypto.CryptoServicesRegistrar;
import org.bouncycastle.crypto.EntropySource;
import org.bouncycastle.crypto.internal.BlockCipher;
import org.bouncycastle.crypto.internal.params.KeyParameter;
import org.bouncycastle.crypto.internal.params.KeyParameterImpl;
import org.bouncycastle.util.Arrays;
import org.bouncycastle.util.Properties;
import org.bouncycastle.util.encoders.Hex;

/**
 * A SP800-90A CTR DRBG.
 */
class CTRSP800DRBG
    implements SP80090DRBG
{
    private static final long TDEA_RESEED_MAX = 1L << (32 - 1);
    private static final long AES_RESEED_MAX = 1L << (48 - 1);
    private static final int TDEA_MAX_BITS_REQUEST = 1 << (13 - 1);
    private static final int AES_MAX_BITS_REQUEST = 1 << (19 - 1);

    private final static Map kats = new HashMap();

    private final static Map reseedKats = new HashMap();
    private final static Map reseedValues = new HashMap();

    static
    {
        kats.put("TRIPLEDES", new byte[][]{
            Hex.decode("09b2711937c5fc9fdf6f7e070625b41f74916ddb93b9f7a7c90091f86cdf2003a052e8d17bc37d86"),
            Hex.decode("b5c3c811e17247830be34f9461bf991401edbe99bc0dd6668b5d3f2501d2659bf99da71e38979e75")});

        kats.put("AES-128", new byte[][]{
            Hex.decode("314069e227a6e4c59c402ac0f9189f921ef19673d16b3fd401ded2f3b8b1d19a1c3b11f948ba8e2a"),
            Hex.decode("36ccfd81909865e88091079bbd408e9943dd3bedf8e7521e43cd639fed11f482bb17a794ed0265f1")});

        kats.put("AES-192", new byte[][]{
            Hex.decode("7ee353634fb8bd87bd4a2b292db7a049615bb8ae6a887efb8e81af7124453dac21949cfb51dd065f"),
            Hex.decode("8861d7165d9983a987e4ac39b9013ae41377f2134e5c7b57d6f8a3653e0ee616f0ddc9e11d85a8fd")});

        kats.put("AES-256", new byte[][]{
            Hex.decode("f5771b72bb3c3ceeea5d4327159f7bcf5d3aed67adaa039528b3d5f846961700734ac1aa5d401709"),
            Hex.decode("a6b09617644ea00b797ce09060d23682b89a09c293fb5fac71ba77943421a7559557bd957bce64c9")});

        reseedValues.put("TRIPLEDES", new byte[][]{
            Hex.decode("0102030405060708090a0b0c0d0e0f101112131415"),
            Hex.decode("0807060504030201")});

        reseedValues.put("AES-128", new byte[][]{
            Hex.decode("0102030405060708090a0b0c0d0e0f10"),
            Hex.decode("100f0e0d0c0b0a090807060504030201")});

        reseedValues.put("AES-192", new byte[][]{
            Hex.decode("0102030405060708090a0b0c0d0e0f101112131415161718"),
            Hex.decode("100f0e0d0c0b0a090807060504030201")});

        reseedValues.put("AES-256", new byte[][]{
            Hex.decode("0102030405060708090a0b0c0d0e0f100102030405060708090a0b0c0d0e0f10"),
            Hex.decode("100f0e0d0c0b0a090807060504030201")});

        reseedKats.put("TRIPLEDES", new byte[][]{
            Hex.decode("48ce7cefb4ec0f4a5a3b50c09a309675a9827404e01e0adff50a6d8d895d0308f6fffaf5e8159a8a"),
            Hex.decode("19d8a900cf51f131070cbbf22a7028edb42d79c836feb0a270e6703bf7d64ffa7bab66922bc7597b")});

        reseedKats.put("AES-128", new byte[][]{
            Hex.decode("af649344a18257a1448aca5e7014c784cf01618ac354a4dd9b63b83f10fd4d31eff645b737619fd7"),
            Hex.decode("c63ff00c3f966108d53270633a945b87fd11d8344946589f1533617323895593229d060c0b25f53e")});

        reseedKats.put("AES-192", new byte[][]{
            Hex.decode("544c683bd1538f349b62135813dc752ee329244ec83e037039dc35beb12a28ea505cdb81ec4bd61e"),
            Hex.decode("58dda13ba129e5ea009c8d0dac7cc5c998b84d52f759acfffa9bdd08d7cdbedc185114e270679e99")});

        reseedKats.put("AES-256", new byte[][]{
            Hex.decode("e20e7e3e5fc4876ac58b412c20b0cd173e0c934762f32d558f84c7a533efcee1b1571253afe18551"),
            Hex.decode("bae2554712e8143be922d97125c7b88fd768dd7c359fc1fe413f6ba5cb83892fe4a407c8aec04762")});
    }

    private EntropySource _entropySource;
    private BlockCipher _engine;
    private int _keySizeInBits;
    private int _seedLength;
    private boolean _isTDEA = false;
    private int _securityStrength;

    // internal state
    private WorkingBuffer workingBuf = new WorkingBuffer();
    private long _reseedCounter = 0;
    private byte[] _personalizationString;


    /**
     * Construct a SP800-90A CTR DRBG.
     * 

* Minimum entropy requirement is the security strength requested. *

* @param engine underlying block cipher to use to support DRBG * @param keySizeInBits size of the key to use with the block cipher. * @param securityStrength security strength required (in bits) * @param entropySource source of entropy to use for seeding/reseeding. * @param personalizationString personalization string to distinguish this DRBG (may be null). * @param nonce nonce to further distinguish this DRBG (may be null). */ public CTRSP800DRBG(BlockCipher engine, int keySizeInBits, int securityStrength, EntropySource entropySource, byte[] personalizationString, byte[] nonce) { _engine = engine; _keySizeInBits = keySizeInBits; _seedLength = keySizeInBits + engine.getBlockSize() * 8; _isTDEA = isTDEA(engine); // check only meaningful when out of startup phase. if (!FipsStatus.isBooting()) { if (_isTDEA && CryptoServicesRegistrar.isInApprovedOnlyMode() && !Properties.isOverrideSet("org.bouncycastle.tripledes.allow_drbg")) { throw new FipsUnapprovedOperationError("Triple-DES CTRDRBG disallowed"); } } init(securityStrength, entropySource, personalizationString, nonce); } private void init(int securityStrength, EntropySource entropySource, byte[] personalizationString, byte[] nonce) { if (securityStrength > 256) { throw new IllegalArgumentException("Requested security strength is not supported by the derivation function"); } if (getMaxSecurityStrength(_engine, _keySizeInBits) < securityStrength) { throw new IllegalArgumentException("Requested security strength is not supported by the derivation function"); } if (entropySource.entropySize() < securityStrength) { throw new IllegalArgumentException("Not enough entropy for security strength required"); } _entropySource = entropySource; _securityStrength = securityStrength; CTR_DRBG_Instantiate_algorithm(personalizationString, nonce); } private void CTR_DRBG_Instantiate_algorithm(byte[] personalisationString, byte[] nonce) { _personalizationString = Arrays.clone(personalisationString); byte[] entropy = getEntropy(); // Get_entropy_input byte[] input = Arrays.concatenate(entropy, nonce, personalisationString); Arrays.fill(entropy, (byte)0); byte[] seedMaterial = Block_Cipher_df(input, _seedLength); Arrays.fill(input, (byte)0); int outlen = _engine.getBlockSize(); workingBuf._Key = new byte[getExpandedKeySizeInBytes()]; workingBuf._V = new byte[outlen]; expandKey(workingBuf._Key); // _Key & _V are modified by this call CTR_DRBG_Update(seedMaterial); Arrays.fill(seedMaterial, (byte)0); _reseedCounter = 1; } private void CTR_DRBG_Update(byte[] seedMaterial) { byte[] temp = new byte[seedMaterial.length]; byte[] outputBlock = new byte[_engine.getBlockSize()]; int i = 0; int outLen = _engine.getBlockSize(); _engine.init(true, new KeyParameterImpl(workingBuf._Key)); while (i * outLen < seedMaterial.length) { addOneTo(workingBuf._V); _engine.processBlock(workingBuf._V, 0, outputBlock, 0); int bytesToCopy = ((temp.length - i * outLen) > outLen) ? outLen : (temp.length - i * outLen); System.arraycopy(outputBlock, 0, temp, i * outLen, bytesToCopy); ++i; } Arrays.fill(outputBlock, (byte)0); XOR(temp, seedMaterial, temp, 0); System.arraycopy(temp, 0, workingBuf._Key, 0, getKeySizeInBytes()); System.arraycopy(temp, getKeySizeInBytes(), workingBuf._V, 0, workingBuf._V.length); Arrays.fill(temp, (byte)0); expandKey(workingBuf._Key); } private void CTR_DRBG_Reseed_algorithm(byte[] additionalInput) { byte[] entropy = getEntropy(); byte[] input = Arrays.concatenate(entropy, additionalInput); Arrays.fill(entropy, (byte)0); byte[] seedMaterial = Block_Cipher_df(input, _seedLength); Arrays.fill(input, (byte)0); // _Key & _V are modified by this call CTR_DRBG_Update(seedMaterial); Arrays.fill(seedMaterial, (byte)0); _reseedCounter = 1; } private void XOR(byte[] out, byte[] a, byte[] b, int bOff) { for (int i = 0; i < out.length; i++) { out[i] = (byte)(a[i] ^ b[i + bOff]); } } private void addOneTo(byte[] longer) { int carry = 1; for (int i = 1; i <= longer.length; i++) // warning { int res = (longer[longer.length - i] & 0xff) + carry; carry = (res > 0xff) ? 1 : 0; longer[longer.length - i] = (byte)res; } } // -- Internal state migration --- private static final byte[] K_BITS = Hex.decode("000102030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F"); // 1. If (number_of_bits_to_return > max_number_of_bits), then return an // ERROR_FLAG. // 2. L = len (input_string)/8. // 3. N = number_of_bits_to_return/8. // Comment: L is the bitstring represention of // the integer resulting from len (input_string)/8. // L shall be represented as a 32-bit integer. // // Comment : N is the bitstring represention of // the integer resulting from // number_of_bits_to_return/8. N shall be // represented as a 32-bit integer. // // 4. S = L || N || input_string || 0x80. // 5. While (len (S) mod outlen) // Comment : Pad S with zeros, if necessary. // 0, S = S || 0x00. // // Comment : Compute the starting value. // 6. temp = the Null string. // 7. i = 0. // 8. K = Leftmost keylen bits of 0x00010203...1D1E1F. // 9. While len (temp) < keylen + outlen, do // // IV = i || 0outlen - len (i). // // 9.1 // // temp = temp || BCC (K, (IV || S)). // // 9.2 // // i = i + 1. // // 9.3 // // Comment : i shall be represented as a 32-bit // integer, i.e., len (i) = 32. // // Comment: The 32-bit integer represenation of // i is padded with zeros to outlen bits. // // Comment: Compute the requested number of // bits. // // 10. K = Leftmost keylen bits of temp. // // 11. X = Next outlen bits of temp. // // 12. temp = the Null string. // // 13. While len (temp) < number_of_bits_to_return, do // // 13.1 X = Block_Encrypt (K, X). // // 13.2 temp = temp || X. // // 14. requested_bits = Leftmost number_of_bits_to_return of temp. // // 15. Return SUCCESS and requested_bits. private byte[] Block_Cipher_df(byte[] inputString, int bitLength) { int outLen = _engine.getBlockSize(); int L = inputString.length; // already in bytes int N = bitLength / 8; // 4 S = L || N || inputstring || 0x80 int sLen = 4 + 4 + L + 1; int blockLen = ((sLen + outLen - 1) / outLen) * outLen; byte[] S = new byte[blockLen]; copyIntToByteArray(S, L, 0); copyIntToByteArray(S, N, 4); System.arraycopy(inputString, 0, S, 8, L); S[8 + L] = (byte)0x80; // S already padded with zeros byte[] temp = new byte[getKeySizeInBytes() + outLen]; byte[] bccOut = new byte[outLen]; byte[] IV = new byte[outLen]; int i = 0; byte[] K = new byte[getExpandedKeySizeInBytes()]; System.arraycopy(K_BITS, 0, K, 0, getKeySizeInBytes()); expandKey(K); KeyParameter bccKey = new KeyParameterImpl(K); while (i * outLen * 8 < _keySizeInBits + outLen * 8) { copyIntToByteArray(IV, i, 0); BCC(bccOut, bccKey, IV, S); int bytesToCopy = ((temp.length - i * outLen) > outLen) ? outLen : (temp.length - i * outLen); System.arraycopy(bccOut, 0, temp, i * outLen, bytesToCopy); ++i; } Arrays.fill(S, (byte)0); Arrays.fill(bccOut, (byte)0); Arrays.fill(IV, (byte)0); byte[] X = new byte[outLen]; System.arraycopy(temp, 0, K, 0, getKeySizeInBytes()); System.arraycopy(temp, getKeySizeInBytes(), X, 0, X.length); Arrays.fill(temp, (byte)0); expandKey(K); temp = new byte[bitLength / 2]; i = 0; _engine.init(true, new KeyParameterImpl(K)); while (i * outLen < temp.length) { _engine.processBlock(X, 0, X, 0); int bytesToCopy = ((temp.length - i * outLen) > outLen) ? outLen : (temp.length - i * outLen); System.arraycopy(X, 0, temp, i * outLen, bytesToCopy); i++; } Arrays.fill(X, (byte)0); Arrays.fill(K, (byte)0); return temp; } /* * 1. chaining_value = 0^outlen * . Comment: Set the first chaining value to outlen zeros. * 2. n = len (data)/outlen. * 3. Starting with the leftmost bits of data, split the data into n blocks of outlen bits * each, forming block(1) to block(n). * 4. For i = 1 to n do * 4.1 input_block = chaining_value ^ block(i) . * 4.2 chaining_value = Block_Encrypt (Key, input_block). * 5. output_block = chaining_value. * 6. Return output_block. */ private void BCC(byte[] bccOut, KeyParameter k, byte[] iV, byte[] data) { int outlen = _engine.getBlockSize(); byte[] chainingValue = new byte[outlen]; // initial values = 0 int n = data.length / outlen; byte[] inputBlock = new byte[outlen]; _engine.init(true, k); _engine.processBlock(iV, 0, chainingValue, 0); for (int i = 0; i < n; i++) { XOR(inputBlock, chainingValue, data, i * outlen); _engine.processBlock(inputBlock, 0, chainingValue, 0); } System.arraycopy(chainingValue, 0, bccOut, 0, bccOut.length); } private void copyIntToByteArray(byte[] buf, int value, int offSet) { buf[offSet + 0] = ((byte)(value >> 24)); buf[offSet + 1] = ((byte)(value >> 16)); buf[offSet + 2] = ((byte)(value >> 8)); buf[offSet + 3] = ((byte)(value)); } /** * Return the block size (in bits) of the DRBG. * * @return the number of bits produced on each internal round of the DRBG. */ public int getBlockSize() { return workingBuf._V.length * 8; } /** * Return the security strength of the DRBG. * * @return the security strength (in bits) of the DRBG. */ public int getSecurityStrength() { return _securityStrength; } /** * Return the personalization string used to create the DRBG. * * @return the the personalization string used to create the DRBG. */ public byte[] getPersonalizationString() { return Arrays.clone(_personalizationString); } /** * Populate a passed in array with random data. * * @param output output array for generated bits. * @param additionalInput additional input to be added to the DRBG in this step. * @param predictionResistant true if a reseed should be forced, false otherwise. * * @return number of bits generated, -1 if a reseed required. */ public int generate(byte[] output, byte[] additionalInput, boolean predictionResistant) { if (predictionResistant) { CTR_DRBG_Reseed_algorithm(additionalInput); additionalInput = null; } if (_isTDEA) { if (_reseedCounter > TDEA_RESEED_MAX) { return -1; } if (DRBGUtils.isTooLarge(output, TDEA_MAX_BITS_REQUEST / 8)) { throw new IllegalArgumentException("Number of bits per request limited to " + TDEA_MAX_BITS_REQUEST); } } else { if (_reseedCounter > AES_RESEED_MAX) { return -1; } if (DRBGUtils.isTooLarge(output, AES_MAX_BITS_REQUEST / 8)) { throw new IllegalArgumentException("Number of bits per request limited to " + AES_MAX_BITS_REQUEST); } } byte[] seedMaterial; if (additionalInput != null) { seedMaterial = Block_Cipher_df(additionalInput, _seedLength); // _Key & _V are modified by this call CTR_DRBG_Update(seedMaterial); } else { seedMaterial = new byte[_seedLength]; } byte[] out = new byte[workingBuf._V.length]; _engine.init(true, new KeyParameterImpl(workingBuf._Key)); for (int i = 0; i <= output.length / out.length; i++) { int bytesToCopy = ((output.length - i * out.length) > out.length) ? out.length : (output.length - i * workingBuf._V.length); if (bytesToCopy != 0) { addOneTo(workingBuf._V); _engine.processBlock(workingBuf._V, 0, out, 0); System.arraycopy(out, 0, output, i * out.length, bytesToCopy); } } // _Key & _V are modified by this call CTR_DRBG_Update(seedMaterial); Arrays.fill(seedMaterial, (byte)0); _reseedCounter++; return output.length * 8; } /** * Reseed the DRBG. * * @param additionalInput additional input to be added to the DRBG in this step. */ public void reseed(byte[] additionalInput) { CTR_DRBG_Reseed_algorithm(additionalInput); } private byte[] getEntropy() { byte[] entropy = _entropySource.getEntropy(); if (entropy == null || entropy.length < (_securityStrength + 7) / 8) { throw new IllegalStateException("Insufficient entropy provided by entropy source"); } return entropy; } public VariantInternalKatTest createSelfTest(FipsAlgorithm algorithm) { return new VariantInternalKatTest(algorithm) { @Override void evaluate() throws Exception { byte[] origKey = workingBuf._Key; byte[] origV = workingBuf._V; byte[] personalizationString = _personalizationString; long origReseedCounter = _reseedCounter; EntropySource origEntropySource = _entropySource; try { byte[] personalization = Hex.decode("404142434445464748494A4B4C4D4E4F505152535455565758595A5B5C5D5E5F606162636465666768696A6B6C6D6E6F70717273747576"); byte[] nonce = Hex.decode("2021222324"); final int entropyStrength = getMaxSecurityStrength(_engine, _keySizeInBits); byte[][] expected = kats.get(algorithm.getName()); init(_securityStrength, new DRBGUtils.KATEntropyProvider().get(entropyStrength), personalization, nonce); byte[] output = new byte[expected[0].length]; generate(output, null, true); if (!Arrays.areEqual(expected[0], output)) { fail("DRBG Block 1 KAT failure"); } output = new byte[expected[1].length]; generate(output, null, true); if (!Arrays.areEqual(expected[1], output)) { fail("DRBG Block 2 KAT failure"); } try { init(_securityStrength, new DRBGUtils.LyingEntropySource(entropyStrength), personalization, nonce); fail("DRBG LyingEntropySource not detected in init"); } catch (IllegalStateException e) { if (!e.getMessage().equals("Insufficient entropy provided by entropy source")) { fail("DRBG self test failed init entropy check"); } } try { init(_securityStrength, new DRBGUtils.LyingEntropySource(20), personalization, nonce); fail("DRBG insufficient EntropySource not detected"); } catch (IllegalArgumentException e) { if (!e.getMessage().equals("Not enough entropy for security strength required")) { fail("DRBG self test failed init entropy check"); } } try { _entropySource = new DRBGUtils.LyingEntropySource(entropyStrength); reseed(null); fail("DRBG LyingEntropySource not detected in reseed"); } catch (IllegalStateException e) { if (!e.getMessage().equals("Insufficient entropy provided by entropy source")) { fail("DRBG self test failed reseed entropy check"); } } try { init(entropyStrength + 1, new DRBGUtils.KATEntropyProvider().get(entropyStrength), personalization, nonce); fail("DRBG successful initialise with too high security strength"); } catch (IllegalArgumentException e) { if (!e.getMessage().equals("Requested security strength is not supported by the derivation function")) { fail("DRBG self test failed init security strength check"); } } } finally { workingBuf._Key = origKey; workingBuf._V = origV; _personalizationString = personalizationString; _reseedCounter = origReseedCounter; _entropySource = origEntropySource; } } }; } public VariantInternalKatTest createReseedSelfTest(FipsAlgorithm algorithm) { return new VariantInternalKatTest(algorithm) { @Override void evaluate() throws Exception { byte[] origKey = workingBuf._Key; byte[] origV = workingBuf._V; byte[] personalizationString = _personalizationString; long origReseedCounter = _reseedCounter; EntropySource origEntropySource = _entropySource; try { byte[] additionalInput = Hex.decode("404142434445464748494A4B4C4D4E4F505152535455565758595A5B5C5D5E5F606162636465666768696A6B6C6D6E6F70717273747576"); int entropyStrength = getMaxSecurityStrength(_engine, _keySizeInBits); byte[][] expected = reseedKats.get(algorithm.getName()); byte[][] internalValues = reseedValues.get(algorithm.getName()); { byte[] iv0 = internalValues[0]; workingBuf._Key = new byte[getExpandedKeySizeInBytes()]; System.arraycopy(iv0, 0, workingBuf._Key, 0, iv0.length); expandKey(workingBuf._Key); } workingBuf._V = Arrays.clone(internalValues[1]); _entropySource = new DRBGUtils.KATEntropyProvider().get(entropyStrength); reseed(additionalInput); if (_reseedCounter != 1) { fail("DRBG reseedCounter failed to reset"); } byte[] output = new byte[expected[0].length]; generate(output, null, false); if (!Arrays.areEqual(expected[0], output)) { fail("DRBG Block 1 reseed KAT failure"); } output = new byte[expected[1].length]; generate(output, null, false); if (!Arrays.areEqual(expected[1], output)) { fail("DRBG Block 2 reseed KAT failure"); } try { _entropySource = new DRBGUtils.LyingEntropySource(entropyStrength); reseed(null); fail("DRBG LyingEntropySource not detected"); } catch (IllegalStateException e) { if (!e.getMessage().equals("Insufficient entropy provided by entropy source")) { fail("DRBG self test failed reseed entropy check"); } } } finally { workingBuf._Key = origKey; workingBuf._V = origV; _personalizationString = personalizationString; _reseedCounter = origReseedCounter; _entropySource = origEntropySource; } } }; } private boolean isTDEA(BlockCipher cipher) { return cipher.getAlgorithmName().equals("DESede") || cipher.getAlgorithmName().equals("TDEA"); } private int getMaxSecurityStrength(BlockCipher cipher, int keySizeInBits) { if (isTDEA(cipher) && keySizeInBits == 168) { return 112; } if (cipher.getAlgorithmName().equals("AES")) { return keySizeInBits; } return -1; } /** * Note that the input key must already be large enough to hold its expanded form */ private void expandKey(byte[] key) { if (_isTDEA) { // expand key to 192 bits. byte[] tmp = new byte[24]; padKey(key, 0, tmp, 0); padKey(key, 7, tmp, 8); padKey(key, 14, tmp, 16); System.arraycopy(tmp, 0, key, 0, 24); Arrays.fill(tmp, (byte)0); } } private int getExpandedKeySizeInBytes() { return _isTDEA ? 24 : getKeySizeInBytes(); } private int getKeySizeInBytes() { return (_keySizeInBits + 7) / 8; } /** * Pad out a key for TDEA, setting odd parity for each byte. * * @param keyMaster * @param keyOff * @param tmp * @param tmpOff */ private void padKey(byte[] keyMaster, int keyOff, byte[] tmp, int tmpOff) { tmp[tmpOff + 0] = (byte)(keyMaster[keyOff + 0] & 0xfe); tmp[tmpOff + 1] = (byte)((keyMaster[keyOff + 0] << 7) | ((keyMaster[keyOff + 1] & 0xfc) >>> 1)); tmp[tmpOff + 2] = (byte)((keyMaster[keyOff + 1] << 6) | ((keyMaster[keyOff + 2] & 0xf8) >>> 2)); tmp[tmpOff + 3] = (byte)((keyMaster[keyOff + 2] << 5) | ((keyMaster[keyOff + 3] & 0xf0) >>> 3)); tmp[tmpOff + 4] = (byte)((keyMaster[keyOff + 3] << 4) | ((keyMaster[keyOff + 4] & 0xe0) >>> 4)); tmp[tmpOff + 5] = (byte)((keyMaster[keyOff + 4] << 3) | ((keyMaster[keyOff + 5] & 0xc0) >>> 5)); tmp[tmpOff + 6] = (byte)((keyMaster[keyOff + 5] << 2) | ((keyMaster[keyOff + 6] & 0x80) >>> 6)); tmp[tmpOff + 7] = (byte)(keyMaster[keyOff + 6] << 1); for (int i = tmpOff; i <= tmpOff + 7; i++) { int b = tmp[i]; tmp[i] = (byte)((b & 0xfe) | ((((b >> 1) ^ (b >> 2) ^ (b >> 3) ^ (b >> 4) ^ (b >> 5) ^ (b >> 6) ^ (b >> 7)) ^ 0x01) & 0x01)); } } private static class WorkingBuffer { private byte[] _Key; private byte[] _V; @Override protected void finalize() throws Throwable { try { Arrays.fill(_Key, (byte)0); Arrays.fill(_V, (byte)0); } finally { super.finalize(); } } } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy