All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.bouncycastle.crypto.fips.EcDhBasicAgreement Maven / Gradle / Ivy

Go to download

The FIPS 140-2 Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms certified to FIPS 140-2 level 1. This jar contains the debug version JCE provider and low-level API for the BC-FJA version 1.0.2.3, FIPS Certificate #3514. Please note the debug jar is not certified.

There is a newer version: 2.0.0
Show newest version
/***************************************************************/
/******    DO NOT EDIT THIS CLASS bc-java SOURCE FILE     ******/
/***************************************************************/
package org.bouncycastle.crypto.fips;

import java.math.BigInteger;

import org.bouncycastle.crypto.IllegalKeyException;
import org.bouncycastle.crypto.internal.BasicAgreement;
import org.bouncycastle.crypto.internal.CipherParameters;
import org.bouncycastle.crypto.internal.params.EcDomainParameters;
import org.bouncycastle.crypto.internal.params.EcPrivateKeyParameters;
import org.bouncycastle.crypto.internal.params.EcPublicKeyParameters;
import org.bouncycastle.math.ec.ECAlgorithms;
import org.bouncycastle.math.ec.ECConstants;
import org.bouncycastle.math.ec.ECPoint;

/**
 * P1363 7.2.1 ECSVDP-DH
 * 

* ECSVDP-DH is Elliptic Curve Secret Value Derivation Primitive, * Diffie-Hellman version. It is based on the work of [DH76], [Mil86], * and [Kob87]. This primitive derives a shared secret value from one * party's private key and another party's public key, where both have * the same set of EC domain parameters. If two parties correctly * execute this primitive, they will produce the same output. This * primitive can be invoked by a scheme to derive a shared secret key; * specifically, it may be used with the schemes ECKAS-DH1 and * DL/ECKAS-DH2. It assumes that the input keys are valid (see also * Section 7.2.2). */ class EcDhBasicAgreement implements BasicAgreement { EcPrivateKeyParameters key; public void init( CipherParameters key) { this.key = (EcPrivateKeyParameters)key; } public int getFieldSize() { return (key.getParameters().getCurve().getFieldSize() + 7) / 8; } public BigInteger calculateAgreement( CipherParameters pubKey) { EcPublicKeyParameters pub = (EcPublicKeyParameters)pubKey; EcDomainParameters params = key.getParameters(); if (!params.equals(pub.getParameters())) { throw new IllegalKeyException("ECDH public key has wrong domain parameters"); } BigInteger d = key.getD(); // Always perform calculations on the exact curve specified by our private key's parameters ECPoint Q = ECAlgorithms.cleanPoint(params.getCurve(), pub.getQ()); if (Q.isInfinity()) { throw new IllegalStateException("Infinity is not a valid public key for ECDHC"); } BigInteger h = params.getH(); if (!h.equals(ECConstants.ONE)) { d = params.getHInv().multiply(d).mod(params.getN()); Q = ECAlgorithms.referenceMultiply(Q, h); } ECPoint P = Q.multiply(d).normalize(); if (P.isInfinity()) { throw new IllegalStateException("Infinity is not a valid agreement value for ECDH"); } return P.getAffineXCoord().toBigInteger(); } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy