All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.bouncycastle.crypto.general.TwofishEngine Maven / Gradle / Ivy

Go to download

The FIPS 140-2 Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms certified to FIPS 140-2 level 1. This jar contains the debug version JCE provider and low-level API for the BC-FJA version 1.0.2.3, FIPS Certificate #3514. Please note the debug jar is not certified.

There is a newer version: 2.0.0
Show newest version
/***************************************************************/
/******    DO NOT EDIT THIS CLASS bc-java SOURCE FILE     ******/
/***************************************************************/
package org.bouncycastle.crypto.general;


import org.bouncycastle.crypto.internal.BlockCipher;
import org.bouncycastle.crypto.internal.CipherParameters;
import org.bouncycastle.crypto.internal.DataLengthException;
import org.bouncycastle.crypto.internal.OutputLengthException;
import org.bouncycastle.crypto.internal.params.KeyParameter;

/**
 * A class that provides Twofish encryption operations.
 * 

* This Java implementation is based on the Java reference * implementation provided by Bruce Schneier and developed * by Raif S. Naffah. */ final class TwofishEngine implements BlockCipher { private static final byte[][] P = { { // p0 (byte)0xA9, (byte)0x67, (byte)0xB3, (byte)0xE8, (byte)0x04, (byte)0xFD, (byte)0xA3, (byte)0x76, (byte)0x9A, (byte)0x92, (byte)0x80, (byte)0x78, (byte)0xE4, (byte)0xDD, (byte)0xD1, (byte)0x38, (byte)0x0D, (byte)0xC6, (byte)0x35, (byte)0x98, (byte)0x18, (byte)0xF7, (byte)0xEC, (byte)0x6C, (byte)0x43, (byte)0x75, (byte)0x37, (byte)0x26, (byte)0xFA, (byte)0x13, (byte)0x94, (byte)0x48, (byte)0xF2, (byte)0xD0, (byte)0x8B, (byte)0x30, (byte)0x84, (byte)0x54, (byte)0xDF, (byte)0x23, (byte)0x19, (byte)0x5B, (byte)0x3D, (byte)0x59, (byte)0xF3, (byte)0xAE, (byte)0xA2, (byte)0x82, (byte)0x63, (byte)0x01, (byte)0x83, (byte)0x2E, (byte)0xD9, (byte)0x51, (byte)0x9B, (byte)0x7C, (byte)0xA6, (byte)0xEB, (byte)0xA5, (byte)0xBE, (byte)0x16, (byte)0x0C, (byte)0xE3, (byte)0x61, (byte)0xC0, (byte)0x8C, (byte)0x3A, (byte)0xF5, (byte)0x73, (byte)0x2C, (byte)0x25, (byte)0x0B, (byte)0xBB, (byte)0x4E, (byte)0x89, (byte)0x6B, (byte)0x53, (byte)0x6A, (byte)0xB4, (byte)0xF1, (byte)0xE1, (byte)0xE6, (byte)0xBD, (byte)0x45, (byte)0xE2, (byte)0xF4, (byte)0xB6, (byte)0x66, (byte)0xCC, (byte)0x95, (byte)0x03, (byte)0x56, (byte)0xD4, (byte)0x1C, (byte)0x1E, (byte)0xD7, (byte)0xFB, (byte)0xC3, (byte)0x8E, (byte)0xB5, (byte)0xE9, (byte)0xCF, (byte)0xBF, (byte)0xBA, (byte)0xEA, (byte)0x77, (byte)0x39, (byte)0xAF, (byte)0x33, (byte)0xC9, (byte)0x62, (byte)0x71, (byte)0x81, (byte)0x79, (byte)0x09, (byte)0xAD, (byte)0x24, (byte)0xCD, (byte)0xF9, (byte)0xD8, (byte)0xE5, (byte)0xC5, (byte)0xB9, (byte)0x4D, (byte)0x44, (byte)0x08, (byte)0x86, (byte)0xE7, (byte)0xA1, (byte)0x1D, (byte)0xAA, (byte)0xED, (byte)0x06, (byte)0x70, (byte)0xB2, (byte)0xD2, (byte)0x41, (byte)0x7B, (byte)0xA0, (byte)0x11, (byte)0x31, (byte)0xC2, (byte)0x27, (byte)0x90, (byte)0x20, (byte)0xF6, (byte)0x60, (byte)0xFF, (byte)0x96, (byte)0x5C, (byte)0xB1, (byte)0xAB, (byte)0x9E, (byte)0x9C, (byte)0x52, (byte)0x1B, (byte)0x5F, (byte)0x93, (byte)0x0A, (byte)0xEF, (byte)0x91, (byte)0x85, (byte)0x49, (byte)0xEE, (byte)0x2D, (byte)0x4F, (byte)0x8F, (byte)0x3B, (byte)0x47, (byte)0x87, (byte)0x6D, (byte)0x46, (byte)0xD6, (byte)0x3E, (byte)0x69, (byte)0x64, (byte)0x2A, (byte)0xCE, (byte)0xCB, (byte)0x2F, (byte)0xFC, (byte)0x97, (byte)0x05, (byte)0x7A, (byte)0xAC, (byte)0x7F, (byte)0xD5, (byte)0x1A, (byte)0x4B, (byte)0x0E, (byte)0xA7, (byte)0x5A, (byte)0x28, (byte)0x14, (byte)0x3F, (byte)0x29, (byte)0x88, (byte)0x3C, (byte)0x4C, (byte)0x02, (byte)0xB8, (byte)0xDA, (byte)0xB0, (byte)0x17, (byte)0x55, (byte)0x1F, (byte)0x8A, (byte)0x7D, (byte)0x57, (byte)0xC7, (byte)0x8D, (byte)0x74, (byte)0xB7, (byte)0xC4, (byte)0x9F, (byte)0x72, (byte)0x7E, (byte)0x15, (byte)0x22, (byte)0x12, (byte)0x58, (byte)0x07, (byte)0x99, (byte)0x34, (byte)0x6E, (byte)0x50, (byte)0xDE, (byte)0x68, (byte)0x65, (byte)0xBC, (byte)0xDB, (byte)0xF8, (byte)0xC8, (byte)0xA8, (byte)0x2B, (byte)0x40, (byte)0xDC, (byte)0xFE, (byte)0x32, (byte)0xA4, (byte)0xCA, (byte)0x10, (byte)0x21, (byte)0xF0, (byte)0xD3, (byte)0x5D, (byte)0x0F, (byte)0x00, (byte)0x6F, (byte)0x9D, (byte)0x36, (byte)0x42, (byte)0x4A, (byte)0x5E, (byte)0xC1, (byte)0xE0}, { // p1 (byte)0x75, (byte)0xF3, (byte)0xC6, (byte)0xF4, (byte)0xDB, (byte)0x7B, (byte)0xFB, (byte)0xC8, (byte)0x4A, (byte)0xD3, (byte)0xE6, (byte)0x6B, (byte)0x45, (byte)0x7D, (byte)0xE8, (byte)0x4B, (byte)0xD6, (byte)0x32, (byte)0xD8, (byte)0xFD, (byte)0x37, (byte)0x71, (byte)0xF1, (byte)0xE1, (byte)0x30, (byte)0x0F, (byte)0xF8, (byte)0x1B, (byte)0x87, (byte)0xFA, (byte)0x06, (byte)0x3F, (byte)0x5E, (byte)0xBA, (byte)0xAE, (byte)0x5B, (byte)0x8A, (byte)0x00, (byte)0xBC, (byte)0x9D, (byte)0x6D, (byte)0xC1, (byte)0xB1, (byte)0x0E, (byte)0x80, (byte)0x5D, (byte)0xD2, (byte)0xD5, (byte)0xA0, (byte)0x84, (byte)0x07, (byte)0x14, (byte)0xB5, (byte)0x90, (byte)0x2C, (byte)0xA3, (byte)0xB2, (byte)0x73, (byte)0x4C, (byte)0x54, (byte)0x92, (byte)0x74, (byte)0x36, (byte)0x51, (byte)0x38, (byte)0xB0, (byte)0xBD, (byte)0x5A, (byte)0xFC, (byte)0x60, (byte)0x62, (byte)0x96, (byte)0x6C, (byte)0x42, (byte)0xF7, (byte)0x10, (byte)0x7C, (byte)0x28, (byte)0x27, (byte)0x8C, (byte)0x13, (byte)0x95, (byte)0x9C, (byte)0xC7, (byte)0x24, (byte)0x46, (byte)0x3B, (byte)0x70, (byte)0xCA, (byte)0xE3, (byte)0x85, (byte)0xCB, (byte)0x11, (byte)0xD0, (byte)0x93, (byte)0xB8, (byte)0xA6, (byte)0x83, (byte)0x20, (byte)0xFF, (byte)0x9F, (byte)0x77, (byte)0xC3, (byte)0xCC, (byte)0x03, (byte)0x6F, (byte)0x08, (byte)0xBF, (byte)0x40, (byte)0xE7, (byte)0x2B, (byte)0xE2, (byte)0x79, (byte)0x0C, (byte)0xAA, (byte)0x82, (byte)0x41, (byte)0x3A, (byte)0xEA, (byte)0xB9, (byte)0xE4, (byte)0x9A, (byte)0xA4, (byte)0x97, (byte)0x7E, (byte)0xDA, (byte)0x7A, (byte)0x17, (byte)0x66, (byte)0x94, (byte)0xA1, (byte)0x1D, (byte)0x3D, (byte)0xF0, (byte)0xDE, (byte)0xB3, (byte)0x0B, (byte)0x72, (byte)0xA7, (byte)0x1C, (byte)0xEF, (byte)0xD1, (byte)0x53, (byte)0x3E, (byte)0x8F, (byte)0x33, (byte)0x26, (byte)0x5F, (byte)0xEC, (byte)0x76, (byte)0x2A, (byte)0x49, (byte)0x81, (byte)0x88, (byte)0xEE, (byte)0x21, (byte)0xC4, (byte)0x1A, (byte)0xEB, (byte)0xD9, (byte)0xC5, (byte)0x39, (byte)0x99, (byte)0xCD, (byte)0xAD, (byte)0x31, (byte)0x8B, (byte)0x01, (byte)0x18, (byte)0x23, (byte)0xDD, (byte)0x1F, (byte)0x4E, (byte)0x2D, (byte)0xF9, (byte)0x48, (byte)0x4F, (byte)0xF2, (byte)0x65, (byte)0x8E, (byte)0x78, (byte)0x5C, (byte)0x58, (byte)0x19, (byte)0x8D, (byte)0xE5, (byte)0x98, (byte)0x57, (byte)0x67, (byte)0x7F, (byte)0x05, (byte)0x64, (byte)0xAF, (byte)0x63, (byte)0xB6, (byte)0xFE, (byte)0xF5, (byte)0xB7, (byte)0x3C, (byte)0xA5, (byte)0xCE, (byte)0xE9, (byte)0x68, (byte)0x44, (byte)0xE0, (byte)0x4D, (byte)0x43, (byte)0x69, (byte)0x29, (byte)0x2E, (byte)0xAC, (byte)0x15, (byte)0x59, (byte)0xA8, (byte)0x0A, (byte)0x9E, (byte)0x6E, (byte)0x47, (byte)0xDF, (byte)0x34, (byte)0x35, (byte)0x6A, (byte)0xCF, (byte)0xDC, (byte)0x22, (byte)0xC9, (byte)0xC0, (byte)0x9B, (byte)0x89, (byte)0xD4, (byte)0xED, (byte)0xAB, (byte)0x12, (byte)0xA2, (byte)0x0D, (byte)0x52, (byte)0xBB, (byte)0x02, (byte)0x2F, (byte)0xA9, (byte)0xD7, (byte)0x61, (byte)0x1E, (byte)0xB4, (byte)0x50, (byte)0x04, (byte)0xF6, (byte)0xC2, (byte)0x16, (byte)0x25, (byte)0x86, (byte)0x56, (byte)0x55, (byte)0x09, (byte)0xBE, (byte)0x91} }; /** * Define the fixed p0/p1 permutations used in keyed S-box lookup. * By changing the following constant definitions, the S-boxes will * automatically get changed in the Twofish engine. */ private static final int P_00 = 1; private static final int P_01 = 0; private static final int P_02 = 0; private static final int P_03 = P_01 ^ 1; private static final int P_04 = 1; private static final int P_10 = 0; private static final int P_11 = 0; private static final int P_12 = 1; private static final int P_13 = P_11 ^ 1; private static final int P_14 = 0; private static final int P_20 = 1; private static final int P_21 = 1; private static final int P_22 = 0; private static final int P_23 = P_21 ^ 1; private static final int P_24 = 0; private static final int P_30 = 0; private static final int P_31 = 1; private static final int P_32 = 1; private static final int P_33 = P_31 ^ 1; private static final int P_34 = 1; /* Primitive polynomial for GF(256) */ private static final int GF256_FDBK = 0x169; private static final int GF256_FDBK_2 = GF256_FDBK / 2; private static final int GF256_FDBK_4 = GF256_FDBK / 4; private static final int RS_GF_FDBK = 0x14D; // field generator //==================================== // Useful constants //==================================== private static final int ROUNDS = 16; private static final int MAX_ROUNDS = 16; // bytes = 128 bits private static final int BLOCK_SIZE = 16; // bytes = 128 bits private static final int MAX_KEY_BITS = 256; private static final int INPUT_WHITEN = 0; private static final int OUTPUT_WHITEN = INPUT_WHITEN + BLOCK_SIZE / 4; // 4 private static final int ROUND_SUBKEYS = OUTPUT_WHITEN + BLOCK_SIZE / 4;// 8 private static final int TOTAL_SUBKEYS = ROUND_SUBKEYS + 2 * MAX_ROUNDS;// 40 private static final int SK_STEP = 0x02020202; private static final int SK_BUMP = 0x01010101; private static final int SK_ROTL = 9; private boolean encrypting = false; private int[] gMDS0 = new int[MAX_KEY_BITS]; private int[] gMDS1 = new int[MAX_KEY_BITS]; private int[] gMDS2 = new int[MAX_KEY_BITS]; private int[] gMDS3 = new int[MAX_KEY_BITS]; /** * gSubKeys[] and gSBox[] are eventually used in the * encryption and decryption methods. */ private int[] gSubKeys; private int[] gSBox; private int k64Cnt = 0; private byte[] workingKey = null; public TwofishEngine() { // calculate the MDS matrix int[] m1 = new int[2]; int[] mX = new int[2]; int[] mY = new int[2]; int j; for (int i = 0; i < MAX_KEY_BITS; i++) { j = P[0][i] & 0xff; m1[0] = j; mX[0] = Mx_X(j) & 0xff; mY[0] = Mx_Y(j) & 0xff; j = P[1][i] & 0xff; m1[1] = j; mX[1] = Mx_X(j) & 0xff; mY[1] = Mx_Y(j) & 0xff; gMDS0[i] = m1[P_00] | mX[P_00] << 8 | mY[P_00] << 16 | mY[P_00] << 24; gMDS1[i] = mY[P_10] | mY[P_10] << 8 | mX[P_10] << 16 | m1[P_10] << 24; gMDS2[i] = mX[P_20] | mY[P_20] << 8 | m1[P_20] << 16 | mY[P_20] << 24; gMDS3[i] = mX[P_30] | m1[P_30] << 8 | mY[P_30] << 16 | mX[P_30] << 24; } } /** * initialise a Twofish cipher. * * @param encrypting whether or not we are for encryption. * @param params the parameters required to set up the cipher. * @throws IllegalArgumentException if the params argument is * inappropriate. */ public void init( boolean encrypting, CipherParameters params) { if (params instanceof KeyParameter) { this.encrypting = encrypting; this.workingKey = ((KeyParameter)params).getKey(); this.k64Cnt = (this.workingKey.length / 8); // pre-padded ? setKey(this.workingKey); return; } throw new IllegalArgumentException("invalid parameter passed to Twofish init - " + params.getClass().getName()); } public String getAlgorithmName() { return "Twofish"; } public int processBlock( byte[] in, int inOff, byte[] out, int outOff) { if (workingKey == null) { throw new IllegalStateException("Twofish not initialised"); } if ((inOff + BLOCK_SIZE) > in.length) { throw new DataLengthException("input buffer too short"); } if ((outOff + BLOCK_SIZE) > out.length) { throw new OutputLengthException("output buffer too short"); } if (encrypting) { encryptBlock(in, inOff, out, outOff); } else { decryptBlock(in, inOff, out, outOff); } return BLOCK_SIZE; } public void reset() { if (this.workingKey != null) { setKey(this.workingKey); } } public int getBlockSize() { return BLOCK_SIZE; } //================================== // Private Implementation //================================== private void setKey(byte[] key) { int[] k32e = new int[MAX_KEY_BITS / 64]; // 4 int[] k32o = new int[MAX_KEY_BITS / 64]; // 4 int[] sBoxKeys = new int[MAX_KEY_BITS / 64]; // 4 gSubKeys = new int[TOTAL_SUBKEYS]; if (k64Cnt < 1) { throw new IllegalArgumentException("Key size less than 64 bits"); } if (k64Cnt > 4) { throw new IllegalArgumentException("Key size larger than 256 bits"); } /* * k64Cnt is the number of 8 byte blocks (64 chunks) * that are in the input key. The input key is a * maximum of 32 bytes (256 bits), so the range * for k64Cnt is 1..4 */ for (int i = 0; i < k64Cnt; i++) { int p = i * 8; k32e[i] = BytesTo32Bits(key, p); k32o[i] = BytesTo32Bits(key, p + 4); sBoxKeys[k64Cnt - 1 - i] = RS_MDS_Encode(k32e[i], k32o[i]); } int q, A, B; for (int i = 0; i < TOTAL_SUBKEYS / 2; i++) { q = i * SK_STEP; A = F32(q, k32e); B = F32(q + SK_BUMP, k32o); B = B << 8 | B >>> 24; A += B; gSubKeys[i * 2] = A; A += B; gSubKeys[i * 2 + 1] = A << SK_ROTL | A >>> (32 - SK_ROTL); } /* * fully expand the table for speed */ int k0 = sBoxKeys[0]; int k1 = sBoxKeys[1]; int k2 = sBoxKeys[2]; int k3 = sBoxKeys[3]; int b0, b1, b2, b3; gSBox = new int[4 * MAX_KEY_BITS]; for (int i = 0; i < MAX_KEY_BITS; i++) { b0 = b1 = b2 = b3 = i; switch (k64Cnt & 3) { case 1: gSBox[i * 2] = gMDS0[(P[P_01][b0] & 0xff) ^ b0(k0)]; gSBox[i * 2 + 1] = gMDS1[(P[P_11][b1] & 0xff) ^ b1(k0)]; gSBox[i * 2 + 0x200] = gMDS2[(P[P_21][b2] & 0xff) ^ b2(k0)]; gSBox[i * 2 + 0x201] = gMDS3[(P[P_31][b3] & 0xff) ^ b3(k0)]; break; case 0: // 256 bits of key b0 = (P[P_04][b0] & 0xff) ^ b0(k3); b1 = (P[P_14][b1] & 0xff) ^ b1(k3); b2 = (P[P_24][b2] & 0xff) ^ b2(k3); b3 = (P[P_34][b3] & 0xff) ^ b3(k3); // fall through, having pre-processed b[0]..b[3] with k32[3] case 3: // 192 bits of key b0 = (P[P_03][b0] & 0xff) ^ b0(k2); b1 = (P[P_13][b1] & 0xff) ^ b1(k2); b2 = (P[P_23][b2] & 0xff) ^ b2(k2); b3 = (P[P_33][b3] & 0xff) ^ b3(k2); // fall through, having pre-processed b[0]..b[3] with k32[2] case 2: // 128 bits of key gSBox[i * 2] = gMDS0[(P[P_01] [(P[P_02][b0] & 0xff) ^ b0(k1)] & 0xff) ^ b0(k0)]; gSBox[i * 2 + 1] = gMDS1[(P[P_11] [(P[P_12][b1] & 0xff) ^ b1(k1)] & 0xff) ^ b1(k0)]; gSBox[i * 2 + 0x200] = gMDS2[(P[P_21] [(P[P_22][b2] & 0xff) ^ b2(k1)] & 0xff) ^ b2(k0)]; gSBox[i * 2 + 0x201] = gMDS3[(P[P_31] [(P[P_32][b3] & 0xff) ^ b3(k1)] & 0xff) ^ b3(k0)]; break; } } /* * the function exits having setup the gSBox with the * input key material. */ } /** * Encrypt the given input starting at the given offset and place * the result in the provided buffer starting at the given offset. * The input will be an exact multiple of our blocksize. *

* encryptBlock uses the pre-calculated gSBox[] and subKey[] * arrays. */ private void encryptBlock( byte[] src, int srcIndex, byte[] dst, int dstIndex) { int x0 = BytesTo32Bits(src, srcIndex) ^ gSubKeys[INPUT_WHITEN]; int x1 = BytesTo32Bits(src, srcIndex + 4) ^ gSubKeys[INPUT_WHITEN + 1]; int x2 = BytesTo32Bits(src, srcIndex + 8) ^ gSubKeys[INPUT_WHITEN + 2]; int x3 = BytesTo32Bits(src, srcIndex + 12) ^ gSubKeys[INPUT_WHITEN + 3]; int k = ROUND_SUBKEYS; int t0, t1; for (int r = 0; r < ROUNDS; r += 2) { t0 = Fe32_0(x0); t1 = Fe32_3(x1); x2 ^= t0 + t1 + gSubKeys[k++]; x2 = x2 >>> 1 | x2 << 31; x3 = (x3 << 1 | x3 >>> 31) ^ (t0 + 2 * t1 + gSubKeys[k++]); t0 = Fe32_0(x2); t1 = Fe32_3(x3); x0 ^= t0 + t1 + gSubKeys[k++]; x0 = x0 >>> 1 | x0 << 31; x1 = (x1 << 1 | x1 >>> 31) ^ (t0 + 2 * t1 + gSubKeys[k++]); } Bits32ToBytes(x2 ^ gSubKeys[OUTPUT_WHITEN], dst, dstIndex); Bits32ToBytes(x3 ^ gSubKeys[OUTPUT_WHITEN + 1], dst, dstIndex + 4); Bits32ToBytes(x0 ^ gSubKeys[OUTPUT_WHITEN + 2], dst, dstIndex + 8); Bits32ToBytes(x1 ^ gSubKeys[OUTPUT_WHITEN + 3], dst, dstIndex + 12); } /** * Decrypt the given input starting at the given offset and place * the result in the provided buffer starting at the given offset. * The input will be an exact multiple of our blocksize. */ private void decryptBlock( byte[] src, int srcIndex, byte[] dst, int dstIndex) { int x2 = BytesTo32Bits(src, srcIndex) ^ gSubKeys[OUTPUT_WHITEN]; int x3 = BytesTo32Bits(src, srcIndex + 4) ^ gSubKeys[OUTPUT_WHITEN + 1]; int x0 = BytesTo32Bits(src, srcIndex + 8) ^ gSubKeys[OUTPUT_WHITEN + 2]; int x1 = BytesTo32Bits(src, srcIndex + 12) ^ gSubKeys[OUTPUT_WHITEN + 3]; int k = ROUND_SUBKEYS + 2 * ROUNDS - 1; int t0, t1; for (int r = 0; r < ROUNDS; r += 2) { t0 = Fe32_0(x2); t1 = Fe32_3(x3); x1 ^= t0 + 2 * t1 + gSubKeys[k--]; x0 = (x0 << 1 | x0 >>> 31) ^ (t0 + t1 + gSubKeys[k--]); x1 = x1 >>> 1 | x1 << 31; t0 = Fe32_0(x0); t1 = Fe32_3(x1); x3 ^= t0 + 2 * t1 + gSubKeys[k--]; x2 = (x2 << 1 | x2 >>> 31) ^ (t0 + t1 + gSubKeys[k--]); x3 = x3 >>> 1 | x3 << 31; } Bits32ToBytes(x0 ^ gSubKeys[INPUT_WHITEN], dst, dstIndex); Bits32ToBytes(x1 ^ gSubKeys[INPUT_WHITEN + 1], dst, dstIndex + 4); Bits32ToBytes(x2 ^ gSubKeys[INPUT_WHITEN + 2], dst, dstIndex + 8); Bits32ToBytes(x3 ^ gSubKeys[INPUT_WHITEN + 3], dst, dstIndex + 12); } /* * TODO: This can be optimised and made cleaner by combining * the functionality in this function and applying it appropriately * to the creation of the subkeys during key setup. */ private int F32(int x, int[] k32) { int b0 = b0(x); int b1 = b1(x); int b2 = b2(x); int b3 = b3(x); int k0 = k32[0]; int k1 = k32[1]; int k2 = k32[2]; int k3 = k32[3]; int result = 0; switch (k64Cnt & 3) { case 1: result = gMDS0[(P[P_01][b0] & 0xff) ^ b0(k0)] ^ gMDS1[(P[P_11][b1] & 0xff) ^ b1(k0)] ^ gMDS2[(P[P_21][b2] & 0xff) ^ b2(k0)] ^ gMDS3[(P[P_31][b3] & 0xff) ^ b3(k0)]; break; case 0: /* 256 bits of key */ b0 = (P[P_04][b0] & 0xff) ^ b0(k3); b1 = (P[P_14][b1] & 0xff) ^ b1(k3); b2 = (P[P_24][b2] & 0xff) ^ b2(k3); b3 = (P[P_34][b3] & 0xff) ^ b3(k3); case 3: b0 = (P[P_03][b0] & 0xff) ^ b0(k2); b1 = (P[P_13][b1] & 0xff) ^ b1(k2); b2 = (P[P_23][b2] & 0xff) ^ b2(k2); b3 = (P[P_33][b3] & 0xff) ^ b3(k2); case 2: result = gMDS0[(P[P_01][(P[P_02][b0] & 0xff) ^ b0(k1)] & 0xff) ^ b0(k0)] ^ gMDS1[(P[P_11][(P[P_12][b1] & 0xff) ^ b1(k1)] & 0xff) ^ b1(k0)] ^ gMDS2[(P[P_21][(P[P_22][b2] & 0xff) ^ b2(k1)] & 0xff) ^ b2(k0)] ^ gMDS3[(P[P_31][(P[P_32][b3] & 0xff) ^ b3(k1)] & 0xff) ^ b3(k0)]; break; } return result; } /** * Use (12, 8) Reed-Solomon code over GF(256) to produce * a key S-box 32-bit entity from 2 key material 32-bit * entities. * * @param k0 first 32-bit entity * @param k1 second 32-bit entity * @return Remainder polynomial generated using RS code */ private int RS_MDS_Encode(int k0, int k1) { int r = k1; for (int i = 0; i < 4; i++) // shift 1 byte at a time { r = RS_rem(r); } r ^= k0; for (int i = 0; i < 4; i++) { r = RS_rem(r); } return r; } /** * Reed-Solomon code parameters: (12,8) reversible code:

*

     * g(x) = x^4 + (a+1/a)x^3 + ax^2 + (a+1/a)x + 1
     * 
* where a = primitive root of field generator 0x14D */ private int RS_rem(int x) { int b = (x >>> 24) & 0xff; int g2 = ((b << 1) ^ ((b & 0x80) != 0 ? RS_GF_FDBK : 0)) & 0xff; int g3 = ((b >>> 1) ^ ((b & 0x01) != 0 ? (RS_GF_FDBK >>> 1) : 0)) ^ g2; return ((x << 8) ^ (g3 << 24) ^ (g2 << 16) ^ (g3 << 8) ^ b); } private int LFSR1(int x) { return (x >> 1) ^ (((x & 0x01) != 0) ? GF256_FDBK_2 : 0); } private int LFSR2(int x) { return (x >> 2) ^ (((x & 0x02) != 0) ? GF256_FDBK_2 : 0) ^ (((x & 0x01) != 0) ? GF256_FDBK_4 : 0); } private int Mx_X(int x) { return x ^ LFSR2(x); } // 5B private int Mx_Y(int x) { return x ^ LFSR1(x) ^ LFSR2(x); } // EF private int b0(int x) { return x & 0xff; } private int b1(int x) { return (x >>> 8) & 0xff; } private int b2(int x) { return (x >>> 16) & 0xff; } private int b3(int x) { return (x >>> 24) & 0xff; } private int Fe32_0(int x) { return gSBox[0x000 + 2 * (x & 0xff)] ^ gSBox[0x001 + 2 * ((x >>> 8) & 0xff)] ^ gSBox[0x200 + 2 * ((x >>> 16) & 0xff)] ^ gSBox[0x201 + 2 * ((x >>> 24) & 0xff)]; } private int Fe32_3(int x) { return gSBox[0x000 + 2 * ((x >>> 24) & 0xff)] ^ gSBox[0x001 + 2 * (x & 0xff)] ^ gSBox[0x200 + 2 * ((x >>> 8) & 0xff)] ^ gSBox[0x201 + 2 * ((x >>> 16) & 0xff)]; } private int BytesTo32Bits(byte[] b, int p) { return ((b[p] & 0xff)) | ((b[p + 1] & 0xff) << 8) | ((b[p + 2] & 0xff) << 16) | ((b[p + 3] & 0xff) << 24); } private void Bits32ToBytes(int in, byte[] b, int offset) { b[offset] = (byte)in; b[offset + 1] = (byte)(in >> 8); b[offset + 2] = (byte)(in >> 16); b[offset + 3] = (byte)(in >> 24); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy