All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.bouncycastle.crypto.fips.EcDhcBasicAgreement Maven / Gradle / Ivy

Go to download

The FIPS 140-3 Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms certified to FIPS 140-3 level 1. This jar contains JCE provider and low-level API for the BC-FJA version 2.0.0, FIPS Certificate #4743. Please see certificate for certified platform details.

There is a newer version: 2.0.0
Show newest version
/***************************************************************/
/******    DO NOT EDIT THIS CLASS bc-java SOURCE FILE     ******/
/***************************************************************/
package org.bouncycastle.crypto.fips;

import java.math.BigInteger;

import org.bouncycastle.crypto.IllegalKeyException;
import org.bouncycastle.crypto.internal.BasicAgreement;
import org.bouncycastle.crypto.internal.CipherParameters;
import org.bouncycastle.crypto.internal.params.EcDomainParameters;
import org.bouncycastle.crypto.internal.params.EcPrivateKeyParameters;
import org.bouncycastle.crypto.internal.params.EcPublicKeyParameters;
import org.bouncycastle.math.ec.ECAlgorithms;
import org.bouncycastle.math.ec.ECPoint;

/**
 * P1363 7.2.2 ECSVDP-DHC
 *
 * ECSVDP-DHC is Elliptic Curve Secret Value Derivation Primitive,
 * Diffie-Hellman version with cofactor multiplication. It is based on
 * the work of [DH76], [Mil86], [Kob87], [LMQ98] and [Kal98a]. This
 * primitive derives a shared secret value from one party's private key
 * and another party's public key, where both have the same set of EC
 * domain parameters. If two parties correctly execute this primitive,
 * they will produce the same output. This primitive can be invoked by a
 * scheme to derive a shared secret key; specifically, it may be used
 * with the schemes ECKAS-DH1 and DL/ECKAS-DH2. It does not assume the
 * validity of the input public key (see also Section 7.2.1).
 * 

* Note: As stated P1363 compatibility mode with ECDH can be preset, and * in this case the implementation doesn't have a ECDH compatibility mode * (if you want that just use ECDHBasicAgreement and note they both implement * BasicAgreement!). */ class EcDhcBasicAgreement implements BasicAgreement { EcPrivateKeyParameters key; public void init( CipherParameters key) { this.key = (EcPrivateKeyParameters)key; } public int getFieldSize() { return (key.getParameters().getCurve().getFieldSize() + 7) / 8; } public BigInteger calculateAgreement( CipherParameters pubKey) { EcPublicKeyParameters pub = (EcPublicKeyParameters)pubKey; EcDomainParameters params = key.getParameters(); if (!params.equals(pub.getParameters())) { throw new IllegalKeyException("ECCDH public key has wrong domain parameters"); } BigInteger hd = params.getH().multiply(key.getD()).mod(params.getN()); // Always perform calculations on the exact curve specified by our private key's parameters ECPoint pubPoint = ECAlgorithms.cleanPoint(params.getCurve(), pub.getQ()); if (pubPoint.isInfinity()) { throw new IllegalStateException("Infinity is not a valid public key for ECCDH"); } ECPoint P = pubPoint.multiply(hd).normalize(); if (P.isInfinity()) { throw new IllegalStateException("Infinity is not a valid agreement value for ECCDH"); } return P.getAffineXCoord().toBigInteger(); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy