org.bouncycastle.crypto.fips.EcDsaSigner Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of bc-fips Show documentation
Show all versions of bc-fips Show documentation
The FIPS 140-3 Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms certified to FIPS 140-3 level 1. This jar contains JCE provider and low-level API for the BC-FJA version 2.0.0, FIPS Certificate #4743. Please see certificate for certified platform details.
package org.bouncycastle.crypto.fips;
import java.math.BigInteger;
import java.security.SecureRandom;
import org.bouncycastle.crypto.internal.CipherParameters;
import org.bouncycastle.crypto.internal.DSA;
import org.bouncycastle.crypto.internal.params.EcDomainParameters;
import org.bouncycastle.crypto.internal.params.EcKeyParameters;
import org.bouncycastle.crypto.internal.params.EcPrivateKeyParameters;
import org.bouncycastle.crypto.internal.params.EcPublicKeyParameters;
import org.bouncycastle.crypto.internal.params.ParametersWithRandom;
import org.bouncycastle.math.ec.ECAlgorithms;
import org.bouncycastle.math.ec.ECConstants;
import org.bouncycastle.math.ec.ECMultiplier;
import org.bouncycastle.math.ec.ECPoint;
import org.bouncycastle.math.ec.FixedPointCombMultiplier;
/**
* EC-DSA as described in X9.62
*/
class EcDsaSigner
implements ECConstants, DSA
{
private final DsaKCalculator kCalculator;
private EcKeyParameters key;
private SecureRandom random;
/**
* Default configuration, random K values.
*/
public EcDsaSigner()
{
this.kCalculator = new RandomDsaKCalculator();
}
/**
* Configuration with an alternate, possibly deterministic calculator of K.
*
* @param kCalculator a K value calculator.
*/
public EcDsaSigner(DsaKCalculator kCalculator)
{
this.kCalculator = kCalculator;
}
public void init(
boolean forSigning,
CipherParameters param)
{
if (forSigning)
{
if (param instanceof ParametersWithRandom)
{
ParametersWithRandom rParam = (ParametersWithRandom)param;
this.random = rParam.getRandom();
this.key = (EcPrivateKeyParameters)rParam.getParameters();
}
else
{
if (kCalculator instanceof RandomDsaKCalculator)
{
throw new IllegalArgumentException("No random provided where one required.");
}
this.key = (EcPrivateKeyParameters)param;
}
}
else
{
this.key = (EcPublicKeyParameters)param;
}
}
// 5.3 pg 28
/**
* generate a signature for the given message using the key we were
* initialised with. For conventional DSA the message should be a SHA-1
* hash of the message of interest.
*
* @param message the message that will be verified later.
*/
public BigInteger[] generateSignature(
byte[] message)
{
EcDomainParameters ec = key.getParameters();
BigInteger n = ec.getN();
BigInteger e = calculateE(n, message);
BigInteger d = ((EcPrivateKeyParameters)key).getD();
if (kCalculator.isDeterministic())
{
kCalculator.init(n, d, message);
}
else
{
kCalculator.init(n, random);
}
BigInteger r, s;
ECMultiplier basePointMultiplier = createBasePointMultiplier();
// 5.3.2
do // generate s
{
BigInteger k;
do // generate r
{
k = kCalculator.nextK();
ECPoint p = basePointMultiplier.multiply(ec.getG(), k).normalize();
// 5.3.3
r = p.getAffineXCoord().toBigInteger().mod(n);
}
while (r.equals(ZERO));
s = k.modInverse(n).multiply(e.add(d.multiply(r))).mod(n);
}
while (s.equals(ZERO));
return new BigInteger[]{ r, s };
}
// 5.4 pg 29
/**
* return true if the value r and s represent a DSA signature for
* the passed in message (for standard DSA the message should be
* a SHA-1 hash of the real message to be verified).
*/
public boolean verifySignature(
byte[] message,
BigInteger r,
BigInteger s)
{
EcDomainParameters ec = key.getParameters();
BigInteger n = ec.getN();
BigInteger e = calculateE(n, message);
// r in the range [1,n-1]
if (r.compareTo(ONE) < 0 || r.compareTo(n) >= 0)
{
return false;
}
// s in the range [1,n-1]
if (s.compareTo(ONE) < 0 || s.compareTo(n) >= 0)
{
return false;
}
BigInteger c = s.modInverse(n);
BigInteger u1 = e.multiply(c).mod(n);
BigInteger u2 = r.multiply(c).mod(n);
ECPoint G = ec.getG();
ECPoint Q = ((EcPublicKeyParameters)key).getQ();
ECPoint point = ECAlgorithms.sumOfTwoMultiplies(G, u1, Q, u2).normalize();
// components must be bogus.
if (point.isInfinity())
{
return false;
}
BigInteger v = point.getAffineXCoord().toBigInteger().mod(n);
return v.equals(r);
}
protected BigInteger calculateE(BigInteger n, byte[] message)
{
int log2n = n.bitLength();
int messageBitLength = message.length * 8;
BigInteger e = new BigInteger(1, message);
if (log2n < messageBitLength)
{
e = e.shiftRight(messageBitLength - log2n);
}
return e;
}
protected ECMultiplier createBasePointMultiplier()
{
return new FixedPointCombMultiplier();
}
}