All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.bouncycastle.apache.bzip2.CBZip2InputStream Maven / Gradle / Ivy

Go to download

The Bouncy Castle Java API for handling the OpenPGP protocol. This jar contains the OpenPGP API for JDK 1.5. The APIs can be used in conjunction with a JCE/JCA provider such as the one provided with the Bouncy Castle Cryptography APIs.

There is a newer version: 1.46
Show newest version
/*
 * The Apache Software License, Version 1.1
 *
 * Copyright (c) 2001-2003 The Apache Software Foundation.  All rights
 * reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 *
 * 3. The end-user documentation included with the redistribution, if
 *    any, must include the following acknowlegement:
 *       "This product includes software developed by the
 *        Apache Software Foundation (http://www.apache.org/)."
 *    Alternately, this acknowlegement may appear in the software itself,
 *    if and wherever such third-party acknowlegements normally appear.
 *
 * 4. The names "Ant" and "Apache Software
 *    Foundation" must not be used to endorse or promote products derived
 *    from this software without prior written permission. For written
 *    permission, please contact [email protected].
 *
 * 5. Products derived from this software may not be called "Apache"
 *    nor may "Apache" appear in their names without prior written
 *    permission of the Apache Group.
 *
 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED.  IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 * ====================================================================
 *
 * This software consists of voluntary contributions made by many
 * individuals on behalf of the Apache Software Foundation.  For more
 * information on the Apache Software Foundation, please see
 * .
 */

/*
 * This package is based on the work done by Keiron Liddle, Aftex Software
 *  to whom the Ant project is very grateful for his
 * great code.
 */
package org.bouncycastle.apache.bzip2;

import java.io.InputStream;
import java.io.IOException;

/**
 * An input stream that decompresses from the BZip2 format (with the file
 * header chars) to be read as any other stream.
 *
 * @author Keiron Liddle
 *
 * NB: note this class has been modified to read the leading BZ from the
 * start of the BZIP2 stream to make it compatible with other PGP programs.
 */
public class CBZip2InputStream extends InputStream implements BZip2Constants {
    private static void cadvise() {
        System.out.println("CRC Error");
        //throw new CCoruptionError();
    }

    private static void badBGLengths() {
        cadvise();
    }

    private static void bitStreamEOF() {
        cadvise();
    }

    private static void compressedStreamEOF() {
        cadvise();
    }

    private void makeMaps() {
        int i;
        nInUse = 0;
        for (i = 0; i < 256; i++) {
            if (inUse[i]) {
                seqToUnseq[nInUse] = (char) i;
                unseqToSeq[i] = (char) nInUse;
                nInUse++;
            }
        }
    }

    /*
      index of the last char in the block, so
      the block size == last + 1.
    */
    private int  last;

    /*
      index in zptr[] of original string after sorting.
    */
    private int  origPtr;

    /*
      always: in the range 0 .. 9.
      The current block size is 100000 * this number.
    */
    private int blockSize100k;

    private boolean blockRandomised;

    private int bsBuff;
    private int bsLive;
    private CRC mCrc = new CRC();

    private boolean[] inUse = new boolean[256];
    private int nInUse;

    private char[] seqToUnseq = new char[256];
    private char[] unseqToSeq = new char[256];

    private char[] selector = new char[MAX_SELECTORS];
    private char[] selectorMtf = new char[MAX_SELECTORS];

    private int[] tt;
    private char[] ll8;

    /*
      freq table collected to save a pass over the data
      during decompression.
    */
    private int[] unzftab = new int[256];

    private int[][] limit = new int[N_GROUPS][MAX_ALPHA_SIZE];
    private int[][] base = new int[N_GROUPS][MAX_ALPHA_SIZE];
    private int[][] perm = new int[N_GROUPS][MAX_ALPHA_SIZE];
    private int[] minLens = new int[N_GROUPS];

    private InputStream bsStream;

    private boolean streamEnd = false;

    private int currentChar = -1;

    private static final int START_BLOCK_STATE = 1;
    private static final int RAND_PART_A_STATE = 2;
    private static final int RAND_PART_B_STATE = 3;
    private static final int RAND_PART_C_STATE = 4;
    private static final int NO_RAND_PART_A_STATE = 5;
    private static final int NO_RAND_PART_B_STATE = 6;
    private static final int NO_RAND_PART_C_STATE = 7;

    private int currentState = START_BLOCK_STATE;

    private int storedBlockCRC, storedCombinedCRC;
    private int computedBlockCRC, computedCombinedCRC;

    int i2, count, chPrev, ch2;
    int i, tPos;
    int rNToGo = 0;
    int rTPos  = 0;
    int j2;
    char z;

    public CBZip2InputStream(InputStream zStream)
        throws IOException
    {
        ll8 = null;
        tt = null;
        bsSetStream(zStream);
        initialize();
        initBlock();
        setupBlock();
    }

    public int read() {
        if (streamEnd) {
            return -1;
        } else {
            int retChar = currentChar;
            switch(currentState) {
            case START_BLOCK_STATE:
                break;
            case RAND_PART_A_STATE:
                break;
            case RAND_PART_B_STATE:
                setupRandPartB();
                break;
            case RAND_PART_C_STATE:
                setupRandPartC();
                break;
            case NO_RAND_PART_A_STATE:
                break;
            case NO_RAND_PART_B_STATE:
                setupNoRandPartB();
                break;
            case NO_RAND_PART_C_STATE:
                setupNoRandPartC();
                break;
            default:
                break;
            }
            return retChar;
        }
    }

    private void initialize() throws IOException {
        char magic3, magic4;
        magic3 = bsGetUChar();
        magic4 = bsGetUChar();
        if (magic3 != 'B' && magic4 != 'Z')
        {
            throw new IOException("Not a BZIP2 marked stream");
        }
        magic3 = bsGetUChar();
        magic4 = bsGetUChar();
        if (magic3 != 'h' || magic4 < '1' || magic4 > '9') {
            bsFinishedWithStream();
            streamEnd = true;
            return;
        }

        setDecompressStructureSizes(magic4 - '0');
        computedCombinedCRC = 0;
    }

    private void initBlock() {
        char magic1, magic2, magic3, magic4;
        char magic5, magic6;
        magic1 = bsGetUChar();
        magic2 = bsGetUChar();
        magic3 = bsGetUChar();
        magic4 = bsGetUChar();
        magic5 = bsGetUChar();
        magic6 = bsGetUChar();
        if (magic1 == 0x17 && magic2 == 0x72 && magic3 == 0x45
            && magic4 == 0x38 && magic5 == 0x50 && magic6 == 0x90) {
            complete();
            return;
        }

        if (magic1 != 0x31 || magic2 != 0x41 || magic3 != 0x59
            || magic4 != 0x26 || magic5 != 0x53 || magic6 != 0x59) {
            badBlockHeader();
            streamEnd = true;
            return;
        }

        storedBlockCRC = bsGetInt32();

        if (bsR(1) == 1) {
            blockRandomised = true;
        } else {
            blockRandomised = false;
        }

        //        currBlockNo++;
        getAndMoveToFrontDecode();

        mCrc.initialiseCRC();
        currentState = START_BLOCK_STATE;
    }

    private void endBlock() {
        computedBlockCRC = mCrc.getFinalCRC();
        /* A bad CRC is considered a fatal error. */
        if (storedBlockCRC != computedBlockCRC) {
            crcError();
        }

        computedCombinedCRC = (computedCombinedCRC << 1)
            | (computedCombinedCRC >>> 31);
        computedCombinedCRC ^= computedBlockCRC;
    }

    private void complete() {
        storedCombinedCRC = bsGetInt32();
        if (storedCombinedCRC != computedCombinedCRC) {
            crcError();
        }

        bsFinishedWithStream();
        streamEnd = true;
    }

    private static void blockOverrun() {
        cadvise();
    }

    private static void badBlockHeader() {
        cadvise();
    }

    private static void crcError() {
        cadvise();
    }

    private void bsFinishedWithStream() {
        try {
            if (this.bsStream != null) {
                if (this.bsStream != System.in) {
                    this.bsStream.close();
                    this.bsStream = null;
                }
            }
        } catch (IOException ioe) {
            //ignore
        }
    }

    private void bsSetStream(InputStream f) {
        bsStream = f;
        bsLive = 0;
        bsBuff = 0;
    }

    private int bsR(int n) {
        int v;
        while (bsLive < n) {
            int zzi;
            char thech = 0;
            try {
                thech = (char) bsStream.read();
            } catch (IOException e) {
                compressedStreamEOF();
            }
            if (thech == -1) {
                compressedStreamEOF();
            }
            zzi = thech;
            bsBuff = (bsBuff << 8) | (zzi & 0xff);
            bsLive += 8;
        }

        v = (bsBuff >> (bsLive - n)) & ((1 << n) - 1);
        bsLive -= n;
        return v;
    }

    private char bsGetUChar() {
        return (char) bsR(8);
    }

    private int bsGetint() {
        int u = 0;
        u = (u << 8) | bsR(8);
        u = (u << 8) | bsR(8);
        u = (u << 8) | bsR(8);
        u = (u << 8) | bsR(8);
        return u;
    }

    private int bsGetIntVS(int numBits) {
        return (int) bsR(numBits);
    }

    private int bsGetInt32() {
        return (int) bsGetint();
    }

    private void hbCreateDecodeTables(int[] limit, int[] base,
                                      int[] perm, char[] length,
                                      int minLen, int maxLen, int alphaSize) {
        int pp, i, j, vec;

        pp = 0;
        for (i = minLen; i <= maxLen; i++) {
            for (j = 0; j < alphaSize; j++) {
                if (length[j] == i) {
                    perm[pp] = j;
                    pp++;
                }
            }
        }

        for (i = 0; i < MAX_CODE_LEN; i++) {
            base[i] = 0;
        }
        for (i = 0; i < alphaSize; i++) {
            base[length[i] + 1]++;
        }

        for (i = 1; i < MAX_CODE_LEN; i++) {
            base[i] += base[i - 1];
        }

        for (i = 0; i < MAX_CODE_LEN; i++) {
            limit[i] = 0;
        }
        vec = 0;

        for (i = minLen; i <= maxLen; i++) {
            vec += (base[i + 1] - base[i]);
            limit[i] = vec - 1;
            vec <<= 1;
        }
        for (i = minLen + 1; i <= maxLen; i++) {
            base[i] = ((limit[i - 1] + 1) << 1) - base[i];
        }
    }

    private void recvDecodingTables() {
        char len[][] = new char[N_GROUPS][MAX_ALPHA_SIZE];
        int i, j, t, nGroups, nSelectors, alphaSize;
        int minLen, maxLen;
        boolean[] inUse16 = new boolean[16];

        /* Receive the mapping table */
        for (i = 0; i < 16; i++) {
            if (bsR(1) == 1) {
                inUse16[i] = true;
            } else {
                inUse16[i] = false;
            }
        }

        for (i = 0; i < 256; i++) {
            inUse[i] = false;
        }

        for (i = 0; i < 16; i++) {
            if (inUse16[i]) {
                for (j = 0; j < 16; j++) {
                    if (bsR(1) == 1) {
                        inUse[i * 16 + j] = true;
                    }
                }
            }
        }

        makeMaps();
        alphaSize = nInUse + 2;

        /* Now the selectors */
        nGroups = bsR(3);
        nSelectors = bsR(15);
        for (i = 0; i < nSelectors; i++) {
            j = 0;
            while (bsR(1) == 1) {
                j++;
            }
            selectorMtf[i] = (char) j;
        }

        /* Undo the MTF values for the selectors. */
        {
            char[] pos = new char[N_GROUPS];
            char tmp, v;
            for (v = 0; v < nGroups; v++) {
                pos[v] = v;
            }

            for (i = 0; i < nSelectors; i++) {
                v = selectorMtf[i];
                tmp = pos[v];
                while (v > 0) {
                    pos[v] = pos[v - 1];
                    v--;
                }
                pos[0] = tmp;
                selector[i] = tmp;
            }
        }

        /* Now the coding tables */
        for (t = 0; t < nGroups; t++) {
            int curr = bsR(5);
            for (i = 0; i < alphaSize; i++) {
                while (bsR(1) == 1) {
                    if (bsR(1) == 0) {
                        curr++;
                    } else {
                        curr--;
                    }
                }
                len[t][i] = (char) curr;
            }
        }

        /* Create the Huffman decoding tables */
        for (t = 0; t < nGroups; t++) {
            minLen = 32;
            maxLen = 0;
            for (i = 0; i < alphaSize; i++) {
                if (len[t][i] > maxLen) {
                    maxLen = len[t][i];
                }
                if (len[t][i] < minLen) {
                    minLen = len[t][i];
                }
            }
            hbCreateDecodeTables(limit[t], base[t], perm[t], len[t], minLen,
                                 maxLen, alphaSize);
            minLens[t] = minLen;
        }
    }

    private void getAndMoveToFrontDecode() {
        char[] yy = new char[256];
        int i, j, nextSym, limitLast;
        int EOB, groupNo, groupPos;

        limitLast = baseBlockSize * blockSize100k;
        origPtr = bsGetIntVS(24);

        recvDecodingTables();
        EOB = nInUse + 1;
        groupNo = -1;
        groupPos = 0;

        /*
          Setting up the unzftab entries here is not strictly
          necessary, but it does save having to do it later
          in a separate pass, and so saves a block's worth of
          cache misses.
        */
        for (i = 0; i <= 255; i++) {
            unzftab[i] = 0;
        }

        for (i = 0; i <= 255; i++) {
            yy[i] = (char) i;
        }

        last = -1;

        {
            int zt, zn, zvec, zj;
            if (groupPos == 0) {
                groupNo++;
                groupPos = G_SIZE;
            }
            groupPos--;
            zt = selector[groupNo];
            zn = minLens[zt];
            zvec = bsR(zn);
            while (zvec > limit[zt][zn]) {
                zn++;
                {
                    {
                        while (bsLive < 1) {
                            int zzi;
                            char thech = 0;
                            try {
                                thech = (char) bsStream.read();
                            } catch (IOException e) {
                                compressedStreamEOF();
                            }
                            if (thech == -1) {
                                compressedStreamEOF();
                            }
                            zzi = thech;
                            bsBuff = (bsBuff << 8) | (zzi & 0xff);
                            bsLive += 8;
                        }
                    }
                    zj = (bsBuff >> (bsLive - 1)) & 1;
                    bsLive--;
                }
                zvec = (zvec << 1) | zj;
            }
            nextSym = perm[zt][zvec - base[zt][zn]];
        }

        while (true) {

            if (nextSym == EOB) {
                break;
            }

            if (nextSym == RUNA || nextSym == RUNB) {
                char ch;
                int s = -1;
                int N = 1;
                do {
                    if (nextSym == RUNA) {
                        s = s + (0 + 1) * N;
                    } else if (nextSym == RUNB) {
                        s = s + (1 + 1) * N;
                           }
                    N = N * 2;
                    {
                        int zt, zn, zvec, zj;
                        if (groupPos == 0) {
                            groupNo++;
                            groupPos = G_SIZE;
                        }
                        groupPos--;
                        zt = selector[groupNo];
                        zn = minLens[zt];
                        zvec = bsR(zn);
                        while (zvec > limit[zt][zn]) {
                            zn++;
                            {
                                {
                                    while (bsLive < 1) {
                                        int zzi;
                                        char thech = 0;
                                        try {
                                            thech = (char) bsStream.read();
                                        } catch (IOException e) {
                                            compressedStreamEOF();
                                        }
                                        if (thech == -1) {
                                            compressedStreamEOF();
                                        }
                                        zzi = thech;
                                        bsBuff = (bsBuff << 8) | (zzi & 0xff);
                                        bsLive += 8;
                                    }
                                }
                                zj = (bsBuff >> (bsLive - 1)) & 1;
                                bsLive--;
                            }
                            zvec = (zvec << 1) | zj;
                        }
                        nextSym = perm[zt][zvec - base[zt][zn]];
                    }
                } while (nextSym == RUNA || nextSym == RUNB);

                s++;
                ch = seqToUnseq[yy[0]];
                unzftab[ch] += s;

                while (s > 0) {
                    last++;
                    ll8[last] = ch;
                    s--;
                }

                if (last >= limitLast) {
                    blockOverrun();
                }
                continue;
            } else {
                char tmp;
                last++;
                if (last >= limitLast) {
                    blockOverrun();
                }

                tmp = yy[nextSym - 1];
                unzftab[seqToUnseq[tmp]]++;
                ll8[last] = seqToUnseq[tmp];

                /*
                  This loop is hammered during decompression,
                  hence the unrolling.

                  for (j = nextSym-1; j > 0; j--) yy[j] = yy[j-1];
                */

                j = nextSym - 1;
                for (; j > 3; j -= 4) {
                    yy[j]     = yy[j - 1];
                    yy[j - 1] = yy[j - 2];
                    yy[j - 2] = yy[j - 3];
                    yy[j - 3] = yy[j - 4];
                }
                for (; j > 0; j--) {
                    yy[j] = yy[j - 1];
                }

                yy[0] = tmp;
                {
                    int zt, zn, zvec, zj;
                    if (groupPos == 0) {
                        groupNo++;
                        groupPos = G_SIZE;
                    }
                    groupPos--;
                    zt = selector[groupNo];
                    zn = minLens[zt];
                    zvec = bsR(zn);
                    while (zvec > limit[zt][zn]) {
                        zn++;
                        {
                            {
                                while (bsLive < 1) {
                                    int zzi;
                                    char thech = 0;
                                    try {
                                        thech = (char) bsStream.read();
                                    } catch (IOException e) {
                                        compressedStreamEOF();
                                    }
                                    zzi = thech;
                                    bsBuff = (bsBuff << 8) | (zzi & 0xff);
                                    bsLive += 8;
                                }
                            }
                            zj = (bsBuff >> (bsLive - 1)) & 1;
                            bsLive--;
                        }
                        zvec = (zvec << 1) | zj;
                    }
                    nextSym = perm[zt][zvec - base[zt][zn]];
                }
                continue;
            }
        }
    }

    private void setupBlock() {
        int[] cftab = new int[257];
        char ch;

        cftab[0] = 0;
        for (i = 1; i <= 256; i++) {
            cftab[i] = unzftab[i - 1];
        }
        for (i = 1; i <= 256; i++) {
            cftab[i] += cftab[i - 1];
        }

        for (i = 0; i <= last; i++) {
            ch = (char) ll8[i];
            tt[cftab[ch]] = i;
            cftab[ch]++;
        }
        cftab = null;

        tPos = tt[origPtr];

        count = 0;
        i2 = 0;
        ch2 = 256;   /* not a char and not EOF */

        if (blockRandomised) {
            rNToGo = 0;
            rTPos = 0;
            setupRandPartA();
        } else {
            setupNoRandPartA();
        }
    }

    private void setupRandPartA() {
        if (i2 <= last) {
            chPrev = ch2;
            ch2 = ll8[tPos];
            tPos = tt[tPos];
            if (rNToGo == 0) {
                rNToGo = rNums[rTPos];
                rTPos++;
                if (rTPos == 512) {
                    rTPos = 0;
                }
            }
            rNToGo--;
            ch2 ^= (int) ((rNToGo == 1) ? 1 : 0);
            i2++;

            currentChar = ch2;
            currentState = RAND_PART_B_STATE;
            mCrc.updateCRC(ch2);
        } else {
            endBlock();
            initBlock();
            setupBlock();
        }
    }

    private void setupNoRandPartA() {
        if (i2 <= last) {
            chPrev = ch2;
            ch2 = ll8[tPos];
            tPos = tt[tPos];
            i2++;

            currentChar = ch2;
            currentState = NO_RAND_PART_B_STATE;
            mCrc.updateCRC(ch2);
        } else {
            endBlock();
            initBlock();
            setupBlock();
        }
    }

    private void setupRandPartB() {
        if (ch2 != chPrev) {
            currentState = RAND_PART_A_STATE;
            count = 1;
            setupRandPartA();
        } else {
            count++;
            if (count >= 4) {
                z = ll8[tPos];
                tPos = tt[tPos];
                if (rNToGo == 0) {
                    rNToGo = rNums[rTPos];
                    rTPos++;
                    if (rTPos == 512) {
                        rTPos = 0;
                    }
                }
                rNToGo--;
                z ^= ((rNToGo == 1) ? 1 : 0);
                j2 = 0;
                currentState = RAND_PART_C_STATE;
                setupRandPartC();
            } else {
                currentState = RAND_PART_A_STATE;
                setupRandPartA();
            }
        }
    }

    private void setupRandPartC() {
        if (j2 < (int) z) {
            currentChar = ch2;
            mCrc.updateCRC(ch2);
            j2++;
        } else {
            currentState = RAND_PART_A_STATE;
            i2++;
            count = 0;
            setupRandPartA();
        }
    }

    private void setupNoRandPartB() {
        if (ch2 != chPrev) {
            currentState = NO_RAND_PART_A_STATE;
            count = 1;
            setupNoRandPartA();
        } else {
            count++;
            if (count >= 4) {
                z = ll8[tPos];
                tPos = tt[tPos];
                currentState = NO_RAND_PART_C_STATE;
                j2 = 0;
                setupNoRandPartC();
            } else {
                currentState = NO_RAND_PART_A_STATE;
                setupNoRandPartA();
            }
        }
    }

    private void setupNoRandPartC() {
        if (j2 < (int) z) {
            currentChar = ch2;
            mCrc.updateCRC(ch2);
            j2++;
        } else {
            currentState = NO_RAND_PART_A_STATE;
            i2++;
            count = 0;
            setupNoRandPartA();
        }
    }

    private void setDecompressStructureSizes(int newSize100k) {
        if (!(0 <= newSize100k && newSize100k <= 9 && 0 <= blockSize100k
               && blockSize100k <= 9)) {
            // throw new IOException("Invalid block size");
        }

        blockSize100k = newSize100k;

        if (newSize100k == 0) {
            return;
        }

        int n = baseBlockSize * newSize100k;
        ll8 = new char[n];
        tt = new int[n];
    }
}





© 2015 - 2024 Weber Informatics LLC | Privacy Policy