All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.bouncycastle.crypto.generators.CramerShoupParametersGenerator Maven / Gradle / Ivy

Go to download

The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for JDK 1.4.

There is a newer version: 1.79
Show newest version
package org.bouncycastle.crypto.generators;

import java.math.BigInteger;
import java.security.SecureRandom;

import org.bouncycastle.crypto.digests.SHA256Digest;
import org.bouncycastle.crypto.params.CramerShoupParameters;
import org.bouncycastle.crypto.params.DHParameters;
import org.bouncycastle.util.BigIntegers;

public class CramerShoupParametersGenerator
{
    private static final BigInteger ONE = BigInteger.valueOf(1);

    private int size;
    private int certainty;
    private SecureRandom random;

    /**
     * Initialise the parameters generator.
     *
     * @param size      bit length for the prime p
     * @param certainty a measure of the uncertainty that the caller is willing to tolerate:
     *                  the probability that the generated modulus is prime exceeds (1 - 1/2^certainty).
     *                  The execution time of this method is proportional to the value of this parameter.
     * @param random    a source of randomness
     */
    public void init(int size, int certainty, SecureRandom random)
    {
        this.size = size;
        this.certainty = certainty;
        this.random = random;
    }

    /**
     * which generates the p and g values from the given parameters, returning
     * the CramerShoupParameters object.
     * 

* Note: can take a while[] *

* @return a generated CramerShoupParameters object. */ public CramerShoupParameters generateParameters() { // // find a safe prime p where p = 2*q + 1, where p and q are prime. // BigInteger[] safePrimes = ParametersHelper.generateSafePrimes(size, certainty, random); // BigInteger p = safePrimes[0]; BigInteger q = safePrimes[1]; BigInteger g1 = ParametersHelper.selectGenerator(q, random); BigInteger g2 = ParametersHelper.selectGenerator(q, random); while (g1.equals(g2)) { g2 = ParametersHelper.selectGenerator(q, random); } return new CramerShoupParameters(q, g1, g2, new SHA256Digest()); } public CramerShoupParameters generateParameters(DHParameters dhParams) { BigInteger p = dhParams.getP(); BigInteger g1 = dhParams.getG(); // now we just need a second generator BigInteger g2 = ParametersHelper.selectGenerator(p, random); while (g1.equals(g2)) { g2 = ParametersHelper.selectGenerator(p, random); } return new CramerShoupParameters(p, g1, g2, new SHA256Digest()); } private static class ParametersHelper { private static final BigInteger TWO = BigInteger.valueOf(2); /* * Finds a pair of prime BigInteger's {p, q: p = 2q + 1} * * (see: Handbook of Applied Cryptography 4.86) */ static BigInteger[] generateSafePrimes(int size, int certainty, SecureRandom random) { BigInteger p, q; int qLength = size - 1; for (; ; ) { q = BigIntegers.createRandomPrime(qLength, 2, random); p = q.shiftLeft(1).add(ONE); if (p.isProbablePrime(certainty) && (certainty <= 2 || q.isProbablePrime(certainty))) { break; } } return new BigInteger[]{p, q}; } static BigInteger selectGenerator(BigInteger p, SecureRandom random) { BigInteger pMinusTwo = p.subtract(TWO); BigInteger g; /* * RFC 2631 2.2.1.2 (and see: Handbook of Applied Cryptography 4.81) */ do { BigInteger h = BigIntegers.createRandomInRange(TWO, pMinusTwo, random); g = h.modPow(TWO, p); } while (g.equals(ONE)); return g; } } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy