org.bouncycastle.crypto.modes.gcm.GCMUtil Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of bcprov-debug-jdk14 Show documentation
Show all versions of bcprov-debug-jdk14 Show documentation
The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for JDK 1.4.
package org.bouncycastle.crypto.modes.gcm;
import org.bouncycastle.math.raw.Interleave;
import org.bouncycastle.util.Longs;
import org.bouncycastle.util.Pack;
public abstract class GCMUtil
{
public static final int SIZE_BYTES = 16;
public static final int SIZE_INTS = 4;
public static final int SIZE_LONGS = 2;
private static final int E1 = 0xe1000000;
private static final long E1L = (E1 & 0xFFFFFFFFL) << 32;
public static byte[] oneAsBytes()
{
byte[] tmp = new byte[SIZE_BYTES];
tmp[0] = (byte)0x80;
return tmp;
}
public static int[] oneAsInts()
{
int[] tmp = new int[SIZE_INTS];
tmp[0] = 1 << 31;
return tmp;
}
public static long[] oneAsLongs()
{
long[] tmp = new long[SIZE_LONGS];
tmp[0] = 1L << 63;
return tmp;
}
public static byte areEqual(byte[] x, byte[] y)
{
int d = 0;
for (int i = 0; i < SIZE_BYTES; ++i)
{
d |= x[i] ^ y[i];
}
d = (d >>> 1) | (d & 1);
return (byte)((d - 1) >> 31);
}
public static int areEqual(int[] x, int[] y)
{
int d = 0;
d |= x[0] ^ y[0];
d |= x[1] ^ y[1];
d |= x[2] ^ y[2];
d |= x[3] ^ y[3];
d = (d >>> 1) | (d & 1);
return (d - 1) >> 31;
}
public static long areEqual(long[] x, long[] y)
{
long d = 0L;
d |= x[0] ^ y[0];
d |= x[1] ^ y[1];
d = (d >>> 1) | (d & 1L);
return (d - 1L) >> 63;
}
public static byte[] asBytes(int[] x)
{
byte[] z = new byte[SIZE_BYTES];
Pack.intToBigEndian(x, 0, SIZE_INTS, z, 0);
return z;
}
public static void asBytes(int[] x, byte[] z)
{
Pack.intToBigEndian(x, 0, SIZE_INTS, z, 0);
}
public static byte[] asBytes(long[] x)
{
byte[] z = new byte[SIZE_BYTES];
Pack.longToBigEndian(x, 0, SIZE_LONGS, z, 0);
return z;
}
public static void asBytes(long[] x, byte[] z)
{
Pack.longToBigEndian(x, 0, SIZE_LONGS, z, 0);
}
public static int[] asInts(byte[] x)
{
int[] z = new int[SIZE_INTS];
Pack.bigEndianToInt(x, 0, z, 0, SIZE_INTS);
return z;
}
public static void asInts(byte[] x, int[] z)
{
Pack.bigEndianToInt(x, 0, z, 0, SIZE_INTS);
}
public static long[] asLongs(byte[] x)
{
long[] z = new long[SIZE_LONGS];
Pack.bigEndianToLong(x, 0, z, 0, SIZE_LONGS);
return z;
}
public static void asLongs(byte[] x, long[] z)
{
Pack.bigEndianToLong(x, 0, z, 0, SIZE_LONGS);
}
public static void copy(byte[] x, byte[] z)
{
for (int i = 0; i < SIZE_BYTES; ++i)
{
z[i] = x[i];
}
}
public static void copy(int[] x, int[] z)
{
z[0] = x[0];
z[1] = x[1];
z[2] = x[2];
z[3] = x[3];
}
public static void copy(long[] x, long[] z)
{
z[0] = x[0];
z[1] = x[1];
}
public static void divideP(long[] x, long[] z)
{
long x0 = x[0], x1 = x[1];
long m = x0 >> 63;
x0 ^= (m & E1L);
z[0] = (x0 << 1) | (x1 >>> 63);
z[1] = (x1 << 1) | -m;
}
public static void multiply(byte[] x, byte[] y)
{
long[] t1 = asLongs(x);
long[] t2 = asLongs(y);
multiply(t1, t2);
asBytes(t1, x);
}
static void multiply(byte[] x, long[] y)
{
/*
* "Three-way recursion" as described in "Batch binary Edwards", Daniel J. Bernstein.
*
* Without access to the high part of a 64x64 product x * y, we use a bit reversal to calculate it:
* rev(x) * rev(y) == rev((x * y) << 1)
*/
long x0 = Pack.bigEndianToLong(x, 0);
long x1 = Pack.bigEndianToLong(x, 8);
long y0 = y[0], y1 = y[1];
long x0r = Longs.reverse(x0), x1r = Longs.reverse(x1);
long y0r = Longs.reverse(y0), y1r = Longs.reverse(y1);
long h0 = Longs.reverse(implMul64(x0r, y0r));
long h1 = implMul64(x0, y0) << 1;
long h2 = Longs.reverse(implMul64(x1r, y1r));
long h3 = implMul64(x1, y1) << 1;
long h4 = Longs.reverse(implMul64(x0r ^ x1r, y0r ^ y1r));
long h5 = implMul64(x0 ^ x1, y0 ^ y1) << 1;
long z0 = h0;
long z1 = h1 ^ h0 ^ h2 ^ h4;
long z2 = h2 ^ h1 ^ h3 ^ h5;
long z3 = h3;
z1 ^= z3 ^ (z3 >>> 1) ^ (z3 >>> 2) ^ (z3 >>> 7);
// z2 ^= (z3 << 63) ^ (z3 << 62) ^ (z3 << 57);
z2 ^= (z3 << 62) ^ (z3 << 57);
z0 ^= z2 ^ (z2 >>> 1) ^ (z2 >>> 2) ^ (z2 >>> 7);
z1 ^= (z2 << 63) ^ (z2 << 62) ^ (z2 << 57);
Pack.longToBigEndian(z0, x, 0);
Pack.longToBigEndian(z1, x, 8);
}
public static void multiply(int[] x, int[] y)
{
int y0 = y[0], y1 = y[1], y2 = y[2], y3 = y[3];
int z0 = 0, z1 = 0, z2 = 0, z3 = 0;
for (int i = 0; i < SIZE_INTS; ++i)
{
int bits = x[i];
for (int j = 0; j < 32; ++j)
{
int m1 = bits >> 31; bits <<= 1;
z0 ^= (y0 & m1);
z1 ^= (y1 & m1);
z2 ^= (y2 & m1);
z3 ^= (y3 & m1);
int m2 = (y3 << 31) >> 8;
y3 = (y3 >>> 1) | (y2 << 31);
y2 = (y2 >>> 1) | (y1 << 31);
y1 = (y1 >>> 1) | (y0 << 31);
y0 = (y0 >>> 1) ^ (m2 & E1);
}
}
x[0] = z0;
x[1] = z1;
x[2] = z2;
x[3] = z3;
}
public static void multiply(long[] x, long[] y)
{
// long x0 = x[0], x1 = x[1];
// long y0 = y[0], y1 = y[1];
// long z0 = 0, z1 = 0, z2 = 0;
//
// for (int j = 0; j < 64; ++j)
// {
// long m0 = x0 >> 63; x0 <<= 1;
// z0 ^= (y0 & m0);
// z1 ^= (y1 & m0);
//
// long m1 = x1 >> 63; x1 <<= 1;
// z1 ^= (y0 & m1);
// z2 ^= (y1 & m1);
//
// long c = (y1 << 63) >> 8;
// y1 = (y1 >>> 1) | (y0 << 63);
// y0 = (y0 >>> 1) ^ (c & E1L);
// }
//
// z0 ^= z2 ^ (z2 >>> 1) ^ (z2 >>> 2) ^ (z2 >>> 7);
// z1 ^= (z2 << 63) ^ (z2 << 62) ^ (z2 << 57);
//
// x[0] = z0;
// x[1] = z1;
/*
* "Three-way recursion" as described in "Batch binary Edwards", Daniel J. Bernstein.
*
* Without access to the high part of a 64x64 product x * y, we use a bit reversal to calculate it:
* rev(x) * rev(y) == rev((x * y) << 1)
*/
long x0 = x[0], x1 = x[1];
long y0 = y[0], y1 = y[1];
long x0r = Longs.reverse(x0), x1r = Longs.reverse(x1);
long y0r = Longs.reverse(y0), y1r = Longs.reverse(y1);
long h0 = Longs.reverse(implMul64(x0r, y0r));
long h1 = implMul64(x0, y0) << 1;
long h2 = Longs.reverse(implMul64(x1r, y1r));
long h3 = implMul64(x1, y1) << 1;
long h4 = Longs.reverse(implMul64(x0r ^ x1r, y0r ^ y1r));
long h5 = implMul64(x0 ^ x1, y0 ^ y1) << 1;
long z0 = h0;
long z1 = h1 ^ h0 ^ h2 ^ h4;
long z2 = h2 ^ h1 ^ h3 ^ h5;
long z3 = h3;
z1 ^= z3 ^ (z3 >>> 1) ^ (z3 >>> 2) ^ (z3 >>> 7);
// z2 ^= (z3 << 63) ^ (z3 << 62) ^ (z3 << 57);
z2 ^= (z3 << 62) ^ (z3 << 57);
z0 ^= z2 ^ (z2 >>> 1) ^ (z2 >>> 2) ^ (z2 >>> 7);
z1 ^= (z2 << 63) ^ (z2 << 62) ^ (z2 << 57);
x[0] = z0;
x[1] = z1;
}
public static void multiplyP(int[] x)
{
int x0 = x[0], x1 = x[1], x2 = x[2], x3 = x[3];
int m = (x3 << 31) >> 31;
x[0] = (x0 >>> 1) ^ (m & E1);
x[1] = (x1 >>> 1) | (x0 << 31);
x[2] = (x2 >>> 1) | (x1 << 31);
x[3] = (x3 >>> 1) | (x2 << 31);
}
public static void multiplyP(int[] x, int[] z)
{
int x0 = x[0], x1 = x[1], x2 = x[2], x3 = x[3];
int m = (x3 << 31) >> 31;
z[0] = (x0 >>> 1) ^ (m & E1);
z[1] = (x1 >>> 1) | (x0 << 31);
z[2] = (x2 >>> 1) | (x1 << 31);
z[3] = (x3 >>> 1) | (x2 << 31);
}
public static void multiplyP(long[] x)
{
long x0 = x[0], x1 = x[1];
long m = (x1 << 63) >> 63;
x[0] = (x0 >>> 1) ^ (m & E1L);
x[1] = (x1 >>> 1) | (x0 << 63);
}
public static void multiplyP(long[] x, long[] z)
{
long x0 = x[0], x1 = x[1];
long m = (x1 << 63) >> 63;
z[0] = (x0 >>> 1) ^ (m & E1L);
z[1] = (x1 >>> 1) | (x0 << 63);
}
public static void multiplyP3(long[] x, long[] z)
{
long x0 = x[0], x1 = x[1];
long c = x1 << 61;
z[0] = (x0 >>> 3) ^ c ^ (c >>> 1) ^ (c >>> 2) ^ (c >>> 7);
z[1] = (x1 >>> 3) | (x0 << 61);
}
public static void multiplyP4(long[] x, long[] z)
{
long x0 = x[0], x1 = x[1];
long c = x1 << 60;
z[0] = (x0 >>> 4) ^ c ^ (c >>> 1) ^ (c >>> 2) ^ (c >>> 7);
z[1] = (x1 >>> 4) | (x0 << 60);
}
public static void multiplyP7(long[] x, long[] z)
{
long x0 = x[0], x1 = x[1];
long c = x1 << 57;
z[0] = (x0 >>> 7) ^ c ^ (c >>> 1) ^ (c >>> 2) ^ (c >>> 7);
z[1] = (x1 >>> 7) | (x0 << 57);
}
public static void multiplyP8(int[] x)
{
int x0 = x[0], x1 = x[1], x2 = x[2], x3 = x[3];
int c = x3 << 24;
x[0] = (x0 >>> 8) ^ c ^ (c >>> 1) ^ (c >>> 2) ^ (c >>> 7);
x[1] = (x1 >>> 8) | (x0 << 24);
x[2] = (x2 >>> 8) | (x1 << 24);
x[3] = (x3 >>> 8) | (x2 << 24);
}
public static void multiplyP8(int[] x, int[] y)
{
int x0 = x[0], x1 = x[1], x2 = x[2], x3 = x[3];
int c = x3 << 24;
y[0] = (x0 >>> 8) ^ c ^ (c >>> 1) ^ (c >>> 2) ^ (c >>> 7);
y[1] = (x1 >>> 8) | (x0 << 24);
y[2] = (x2 >>> 8) | (x1 << 24);
y[3] = (x3 >>> 8) | (x2 << 24);
}
public static void multiplyP8(long[] x)
{
long x0 = x[0], x1 = x[1];
long c = x1 << 56;
x[0] = (x0 >>> 8) ^ c ^ (c >>> 1) ^ (c >>> 2) ^ (c >>> 7);
x[1] = (x1 >>> 8) | (x0 << 56);
}
public static void multiplyP8(long[] x, long[] y)
{
long x0 = x[0], x1 = x[1];
long c = x1 << 56;
y[0] = (x0 >>> 8) ^ c ^ (c >>> 1) ^ (c >>> 2) ^ (c >>> 7);
y[1] = (x1 >>> 8) | (x0 << 56);
}
public static void multiplyP16(long[] x)
{
long x0 = x[0], x1 = x[1];
long c = x1 << 48;
x[0] = (x0 >>> 16) ^ c ^ (c >>> 1) ^ (c >>> 2) ^ (c >>> 7);
x[1] = (x1 >>> 16) | (x0 << 48);
}
public static long[] pAsLongs()
{
long[] tmp = new long[SIZE_LONGS];
tmp[0] = 1L << 62;
return tmp;
}
public static void square(long[] x, long[] z)
{
long[] t = new long[SIZE_LONGS * 2];
Interleave.expand64To128Rev(x[0], t, 0);
Interleave.expand64To128Rev(x[1], t, 2);
long z0 = t[0], z1 = t[1], z2 = t[2], z3 = t[3];
z1 ^= z3 ^ (z3 >>> 1) ^ (z3 >>> 2) ^ (z3 >>> 7);
z2 ^= (z3 << 63) ^ (z3 << 62) ^ (z3 << 57);
z0 ^= z2 ^ (z2 >>> 1) ^ (z2 >>> 2) ^ (z2 >>> 7);
z1 ^= (z2 << 63) ^ (z2 << 62) ^ (z2 << 57);
z[0] = z0;
z[1] = z1;
}
public static void xor(byte[] x, byte[] y)
{
int i = 0;
do
{
x[i] ^= y[i]; ++i;
x[i] ^= y[i]; ++i;
x[i] ^= y[i]; ++i;
x[i] ^= y[i]; ++i;
}
while (i < SIZE_BYTES);
}
public static void xor(byte[] x, byte[] y, int yOff)
{
int i = 0;
do
{
x[i] ^= y[yOff + i]; ++i;
x[i] ^= y[yOff + i]; ++i;
x[i] ^= y[yOff + i]; ++i;
x[i] ^= y[yOff + i]; ++i;
}
while (i < SIZE_BYTES);
}
public static void xor(byte[] x, int xOff, byte[] y, int yOff, byte[] z, int zOff)
{
int i = 0;
do
{
z[zOff + i] = (byte)(x[xOff + i] ^ y[yOff + i]); ++i;
z[zOff + i] = (byte)(x[xOff + i] ^ y[yOff + i]); ++i;
z[zOff + i] = (byte)(x[xOff + i] ^ y[yOff + i]); ++i;
z[zOff + i] = (byte)(x[xOff + i] ^ y[yOff + i]); ++i;
}
while (i < SIZE_BYTES);
}
public static void xor(byte[] x, byte[] y, int yOff, int yLen)
{
while (--yLen >= 0)
{
x[yLen] ^= y[yOff + yLen];
}
}
public static void xor(byte[] x, int xOff, byte[] y, int yOff, int len)
{
while (--len >= 0)
{
x[xOff + len] ^= y[yOff + len];
}
}
public static void xor(byte[] x, byte[] y, byte[] z)
{
int i = 0;
do
{
z[i] = (byte)(x[i] ^ y[i]); ++i;
z[i] = (byte)(x[i] ^ y[i]); ++i;
z[i] = (byte)(x[i] ^ y[i]); ++i;
z[i] = (byte)(x[i] ^ y[i]); ++i;
}
while (i < SIZE_BYTES);
}
public static void xor(int[] x, int[] y)
{
x[0] ^= y[0];
x[1] ^= y[1];
x[2] ^= y[2];
x[3] ^= y[3];
}
public static void xor(int[] x, int[] y, int[] z)
{
z[0] = x[0] ^ y[0];
z[1] = x[1] ^ y[1];
z[2] = x[2] ^ y[2];
z[3] = x[3] ^ y[3];
}
public static void xor(long[] x, long[] y)
{
x[0] ^= y[0];
x[1] ^= y[1];
}
public static void xor(long[] x, long[] y, long[] z)
{
z[0] = x[0] ^ y[0];
z[1] = x[1] ^ y[1];
}
private static long implMul64(long x, long y)
{
long x0 = x & 0x1111111111111111L;
long x1 = x & 0x2222222222222222L;
long x2 = x & 0x4444444444444444L;
long x3 = x & 0x8888888888888888L;
long y0 = y & 0x1111111111111111L;
long y1 = y & 0x2222222222222222L;
long y2 = y & 0x4444444444444444L;
long y3 = y & 0x8888888888888888L;
long z0 = (x0 * y0) ^ (x1 * y3) ^ (x2 * y2) ^ (x3 * y1);
long z1 = (x0 * y1) ^ (x1 * y0) ^ (x2 * y3) ^ (x3 * y2);
long z2 = (x0 * y2) ^ (x1 * y1) ^ (x2 * y0) ^ (x3 * y3);
long z3 = (x0 * y3) ^ (x1 * y2) ^ (x2 * y1) ^ (x3 * y0);
z0 &= 0x1111111111111111L;
z1 &= 0x2222222222222222L;
z2 &= 0x4444444444444444L;
z3 &= 0x8888888888888888L;
return z0 | z1 | z2 | z3;
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy