org.bouncycastle.pqc.crypto.cmce.GF13 Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of bcprov-debug-jdk14 Show documentation
Show all versions of bcprov-debug-jdk14 Show documentation
The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for JDK 1.4.
package org.bouncycastle.pqc.crypto.cmce;
class GF13
extends GF
{
public GF13(int gfbits)
{
super(gfbits);
}
protected short gf_mul(short in0, short in1)
{
int i;
long tmp;
long t0;
long t1;
long t;
t0 = in0;
t1 = in1;
tmp = t0 * (t1 & 1);
for (i = 1; i < GFBITS; i++)
tmp ^= (t0 * (t1 & (1 << i)));
//
t = tmp & 0x1FF0000L;
tmp ^= (t >> 9) ^ (t >> 10) ^ (t >> 12) ^ (t >> 13);
t = tmp & 0x000E000L;
tmp ^= (t >> 9) ^ (t >> 10) ^ (t >> 12) ^ (t >> 13);
return (short) (tmp & GFMASK);
}
/* input: field element in */
/* return: (in^2)^2 */
protected short gf_sq2(short in)
{
int i;
long[] B = {0x1111111111111111L,
0x0303030303030303L,
0x000F000F000F000FL,
0x000000FF000000FFL};
long[] M = {0x0001FF0000000000L,
0x000000FF80000000L,
0x000000007FC00000L,
0x00000000003FE000L};
long x = in;
long t;
x = (x | (x << 24)) & B[3];
x = (x | (x << 12)) & B[2];
x = (x | (x << 6)) & B[1];
x = (x | (x << 3)) & B[0];
for (i = 0; i < 4; i++)
{
t = x & M[i];
x ^= (t >> 9) ^ (t >> 10) ^ (t >> 12) ^ (t >> 13);
}
return (short) (x & GFMASK);
}
/* input: field element in, m */
/* return: (in^2)*m */
private short gf_sqmul(short in, short m)
{
int i;
long x;
long t0;
long t1;
long t;
long[] M = {0x0000001FF0000000L,
0x000000000FF80000L,
0x000000000007E000L};
t0 = in;
t1 = m;
x = (t1 << 6) * (t0 & (1 << 6));
t0 ^= (t0 << 7);
x ^= (t1 * (t0 & (0x04001)));
x ^= (t1 * (t0 & (0x08002))) << 1;
x ^= (t1 * (t0 & (0x10004))) << 2;
x ^= (t1 * (t0 & (0x20008))) << 3;
x ^= (t1 * (t0 & (0x40010))) << 4;
x ^= (t1 * (t0 & (0x80020))) << 5;
for (i = 0; i < 3; i++)
{
t = x & M[i];
x ^= (t >> 9) ^ (t >> 10) ^ (t >> 12) ^ (t >> 13);
}
return (short) (x & GFMASK);
}
/* input: field element in, m */
/* return: ((in^2)^2)*m */
private short gf_sq2mul(short in, short m)
{
int i;
long x;
long t0;
long t1;
long t;
long[] M = {0x1FF0000000000000L,
0x000FF80000000000L,
0x000007FC00000000L,
0x00000003FE000000L,
0x0000000001FE0000L,
0x000000000001E000L};
t0 = in;
t1 = m;
x = (t1 << 18) * (t0 & (1 << 6));
t0 ^= (t0 << 21);
x ^= (t1 * (t0 & (0x010000001L)));
x ^= (t1 * (t0 & (0x020000002L))) << 3;
x ^= (t1 * (t0 & (0x040000004L))) << 6;
x ^= (t1 * (t0 & (0x080000008L))) << 9;
x ^= (t1 * (t0 & (0x100000010L))) << 12;
x ^= (t1 * (t0 & (0x200000020L))) << 15;
for (i = 0; i < 6; i++)
{
t = x & M[i];
x ^= (t >> 9) ^ (t >> 10) ^ (t >> 12) ^ (t >> 13);
}
return (short) (x & GFMASK);
}
/* input: field element den, num */
/* return: (num/den) */
protected short gf_frac(short den, short num)
{
short tmp_11;
short tmp_1111;
short out;
tmp_11 = gf_sqmul(den, den); // ^11
tmp_1111 = gf_sq2mul(tmp_11, tmp_11); // ^1111
out = gf_sq2(tmp_1111);
out = gf_sq2mul(out, tmp_1111); // ^11111111
out = gf_sq2(out);
out = gf_sq2mul(out, tmp_1111); // ^111111111111
return gf_sqmul(out, num); // ^1111111111110 = ^-1
}
protected short gf_inv(short den)
{
return gf_frac(den, ((short) 1));
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy