org.bouncycastle.math.ec.custom.djb.Curve25519FieldElement Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of bcprov-debug-jdk14 Show documentation
Show all versions of bcprov-debug-jdk14 Show documentation
The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for JDK 1.4.
package org.bouncycastle.math.ec.custom.djb;
import java.math.BigInteger;
import org.bouncycastle.math.ec.ECFieldElement;
import org.bouncycastle.math.raw.Nat256;
import org.bouncycastle.util.Arrays;
public class Curve25519FieldElement extends ECFieldElement.AbstractFp
{
public static final BigInteger Q = Nat256.toBigInteger(Curve25519Field.P);
// Calculated as ECConstants.TWO.modPow(Q.shiftRight(2), Q)
private static final int[] PRECOMP_POW2 = new int[]{ 0x4a0ea0b0, 0xc4ee1b27, 0xad2fe478, 0x2f431806,
0x3dfbd7a7, 0x2b4d0099, 0x4fc1df0b, 0x2b832480 };
protected int[] x;
public Curve25519FieldElement(BigInteger x)
{
if (x == null || x.signum() < 0 || x.compareTo(Q) >= 0)
{
throw new IllegalArgumentException("x value invalid for Curve25519FieldElement");
}
this.x = Curve25519Field.fromBigInteger(x);
}
public Curve25519FieldElement()
{
this.x = Nat256.create();
}
protected Curve25519FieldElement(int[] x)
{
this.x = x;
}
public boolean isZero()
{
return Nat256.isZero(x);
}
public boolean isOne()
{
return Nat256.isOne(x);
}
public boolean testBitZero()
{
return Nat256.getBit(x, 0) == 1;
}
public BigInteger toBigInteger()
{
return Nat256.toBigInteger(x);
}
public String getFieldName()
{
return "Curve25519Field";
}
public int getFieldSize()
{
return Q.bitLength();
}
public ECFieldElement add(ECFieldElement b)
{
int[] z = Nat256.create();
Curve25519Field.add(x, ((Curve25519FieldElement)b).x, z);
return new Curve25519FieldElement(z);
}
public ECFieldElement addOne()
{
int[] z = Nat256.create();
Curve25519Field.addOne(x, z);
return new Curve25519FieldElement(z);
}
public ECFieldElement subtract(ECFieldElement b)
{
int[] z = Nat256.create();
Curve25519Field.subtract(x, ((Curve25519FieldElement)b).x, z);
return new Curve25519FieldElement(z);
}
public ECFieldElement multiply(ECFieldElement b)
{
int[] z = Nat256.create();
Curve25519Field.multiply(x, ((Curve25519FieldElement)b).x, z);
return new Curve25519FieldElement(z);
}
public ECFieldElement divide(ECFieldElement b)
{
// return multiply(b.invert());
int[] z = Nat256.create();
Curve25519Field.inv(((Curve25519FieldElement)b).x, z);
Curve25519Field.multiply(z, x, z);
return new Curve25519FieldElement(z);
}
public ECFieldElement negate()
{
int[] z = Nat256.create();
Curve25519Field.negate(x, z);
return new Curve25519FieldElement(z);
}
public ECFieldElement square()
{
int[] z = Nat256.create();
Curve25519Field.square(x, z);
return new Curve25519FieldElement(z);
}
public ECFieldElement invert()
{
// return new Curve25519FieldElement(toBigInteger().modInverse(Q));
int[] z = Nat256.create();
Curve25519Field.inv(x, z);
return new Curve25519FieldElement(z);
}
/**
* return a sqrt root - the routine verifies that the calculation returns the right value - if
* none exists it returns null.
*/
public ECFieldElement sqrt()
{
/*
* Q == 8m + 5, so we use Pocklington's method for this case.
*
* First, raise this element to the exponent 2^252 - 2^1 (i.e. m + 1)
*
* Breaking up the exponent's binary representation into "repunits", we get:
* { 251 1s } { 1 0s }
*
* Therefore we need an addition chain containing 251 (the lengths of the repunits)
* We use: 1, 2, 3, 4, 7, 11, 15, 30, 60, 120, 131, [251]
*/
int[] x1 = this.x;
if (Nat256.isZero(x1) || Nat256.isOne(x1))
{
return this;
}
int[] x2 = Nat256.create();
Curve25519Field.square(x1, x2);
Curve25519Field.multiply(x2, x1, x2);
int[] x3 = x2;
Curve25519Field.square(x2, x3);
Curve25519Field.multiply(x3, x1, x3);
int[] x4 = Nat256.create();
Curve25519Field.square(x3, x4);
Curve25519Field.multiply(x4, x1, x4);
int[] x7 = Nat256.create();
Curve25519Field.squareN(x4, 3, x7);
Curve25519Field.multiply(x7, x3, x7);
int[] x11 = x3;
Curve25519Field.squareN(x7, 4, x11);
Curve25519Field.multiply(x11, x4, x11);
int[] x15 = x7;
Curve25519Field.squareN(x11, 4, x15);
Curve25519Field.multiply(x15, x4, x15);
int[] x30 = x4;
Curve25519Field.squareN(x15, 15, x30);
Curve25519Field.multiply(x30, x15, x30);
int[] x60 = x15;
Curve25519Field.squareN(x30, 30, x60);
Curve25519Field.multiply(x60, x30, x60);
int[] x120 = x30;
Curve25519Field.squareN(x60, 60, x120);
Curve25519Field.multiply(x120, x60, x120);
int[] x131 = x60;
Curve25519Field.squareN(x120, 11, x131);
Curve25519Field.multiply(x131, x11, x131);
int[] x251 = x11;
Curve25519Field.squareN(x131, 120, x251);
Curve25519Field.multiply(x251, x120, x251);
int[] t1 = x251;
Curve25519Field.square(t1, t1);
int[] t2 = x120;
Curve25519Field.square(t1, t2);
if (Nat256.eq(x1, t2))
{
return new Curve25519FieldElement(t1);
}
/*
* If the first guess is incorrect, we multiply by a precomputed power of 2 to get the second guess,
* which is ((4x)^(m + 1))/2 mod Q
*/
Curve25519Field.multiply(t1, PRECOMP_POW2, t1);
Curve25519Field.square(t1, t2);
if (Nat256.eq(x1, t2))
{
return new Curve25519FieldElement(t1);
}
return null;
}
public boolean equals(Object other)
{
if (other == this)
{
return true;
}
if (!(other instanceof Curve25519FieldElement))
{
return false;
}
Curve25519FieldElement o = (Curve25519FieldElement)other;
return Nat256.eq(x, o.x);
}
public int hashCode()
{
return Q.hashCode() ^ Arrays.hashCode(x, 0, 8);
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy