All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.bouncycastle.crypto.encodings.PKCS1Encoding Maven / Gradle / Ivy

Go to download

The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for Java 1.5 and later with debug enabled.

There is a newer version: 1.70
Show newest version
package org.bouncycastle.crypto.encodings;

import java.security.AccessController;
import java.security.PrivilegedAction;
import java.security.SecureRandom;

import org.bouncycastle.crypto.AsymmetricBlockCipher;
import org.bouncycastle.crypto.CipherParameters;
import org.bouncycastle.crypto.InvalidCipherTextException;
import org.bouncycastle.crypto.params.AsymmetricKeyParameter;
import org.bouncycastle.crypto.params.ParametersWithRandom;
import org.bouncycastle.util.Arrays;

/**
 * this does your basic PKCS 1 v1.5 padding - whether or not you should be using this
 * depends on your application - see PKCS1 Version 2 for details.
 */
public class PKCS1Encoding
    implements AsymmetricBlockCipher
{
    /**
     * @deprecated use NOT_STRICT_LENGTH_ENABLED_PROPERTY
     */
    public static final String STRICT_LENGTH_ENABLED_PROPERTY = "org.bouncycastle.pkcs1.strict";

    /**
     * some providers fail to include the leading zero in PKCS1 encoded blocks. If you need to
     * work with one of these set the system property org.bouncycastle.pkcs1.not_strict to true.
     * 

* The system property is checked during construction of the encoding object, it is set to * false by default. *

*/ public static final String NOT_STRICT_LENGTH_ENABLED_PROPERTY = "org.bouncycastle.pkcs1.not_strict"; private static final int HEADER_LENGTH = 10; private SecureRandom random; private AsymmetricBlockCipher engine; private boolean forEncryption; private boolean forPrivateKey; private boolean useStrictLength; private int pLen = -1; private byte[] fallback = null; private byte[] blockBuffer; /** * Basic constructor. * * @param cipher */ public PKCS1Encoding( AsymmetricBlockCipher cipher) { this.engine = cipher; this.useStrictLength = useStrict(); } /** * Constructor for decryption with a fixed plaintext length. * * @param cipher The cipher to use for cryptographic operation. * @param pLen Length of the expected plaintext. */ public PKCS1Encoding( AsymmetricBlockCipher cipher, int pLen) { this.engine = cipher; this.useStrictLength = useStrict(); this.pLen = pLen; } /** * Constructor for decryption with a fixed plaintext length and a fallback * value that is returned, if the padding is incorrect. * * @param cipher The cipher to use for cryptographic operation. * @param fallback The fallback value, we don't do an arraycopy here. */ public PKCS1Encoding( AsymmetricBlockCipher cipher, byte[] fallback) { this.engine = cipher; this.useStrictLength = useStrict(); this.fallback = fallback; this.pLen = fallback.length; } // // for J2ME compatibility // private boolean useStrict() { // required if security manager has been installed. String strict = (String)AccessController.doPrivileged(new PrivilegedAction() { public Object run() { return System.getProperty(STRICT_LENGTH_ENABLED_PROPERTY); } }); String notStrict = (String)AccessController.doPrivileged(new PrivilegedAction() { public Object run() { return System.getProperty(NOT_STRICT_LENGTH_ENABLED_PROPERTY); } }); if (notStrict != null) { return !notStrict.equals("true"); } return strict == null || strict.equals("true"); } public AsymmetricBlockCipher getUnderlyingCipher() { return engine; } public void init( boolean forEncryption, CipherParameters param) { AsymmetricKeyParameter kParam; if (param instanceof ParametersWithRandom) { ParametersWithRandom rParam = (ParametersWithRandom)param; this.random = rParam.getRandom(); kParam = (AsymmetricKeyParameter)rParam.getParameters(); } else { kParam = (AsymmetricKeyParameter)param; if (!kParam.isPrivate() && forEncryption) { this.random = new SecureRandom(); } } engine.init(forEncryption, param); this.forPrivateKey = kParam.isPrivate(); this.forEncryption = forEncryption; this.blockBuffer = new byte[engine.getOutputBlockSize()]; if (pLen > 0 && fallback == null && random == null) { throw new IllegalArgumentException("encoder requires random"); } } public int getInputBlockSize() { int baseBlockSize = engine.getInputBlockSize(); if (forEncryption) { return baseBlockSize - HEADER_LENGTH; } else { return baseBlockSize; } } public int getOutputBlockSize() { int baseBlockSize = engine.getOutputBlockSize(); if (forEncryption) { return baseBlockSize; } else { return baseBlockSize - HEADER_LENGTH; } } public byte[] processBlock( byte[] in, int inOff, int inLen) throws InvalidCipherTextException { if (forEncryption) { return encodeBlock(in, inOff, inLen); } else { return decodeBlock(in, inOff, inLen); } } private byte[] encodeBlock( byte[] in, int inOff, int inLen) throws InvalidCipherTextException { if (inLen > getInputBlockSize()) { throw new IllegalArgumentException("input data too large"); } byte[] block = new byte[engine.getInputBlockSize()]; if (forPrivateKey) { block[0] = 0x01; // type code 1 for (int i = 1; i != block.length - inLen - 1; i++) { block[i] = (byte)0xFF; } } else { random.nextBytes(block); // random fill block[0] = 0x02; // type code 2 // // a zero byte marks the end of the padding, so all // the pad bytes must be non-zero. // for (int i = 1; i != block.length - inLen - 1; i++) { while (block[i] == 0) { block[i] = (byte)random.nextInt(); } } } block[block.length - inLen - 1] = 0x00; // mark the end of the padding System.arraycopy(in, inOff, block, block.length - inLen, inLen); return engine.processBlock(block, 0, block.length); } /** * Checks if the argument is a correctly PKCS#1.5 encoded Plaintext * for encryption. * * @param encoded The Plaintext. * @param pLen Expected length of the plaintext. * @return Either 0, if the encoding is correct, or -1, if it is incorrect. */ private static int checkPkcs1Encoding(byte[] encoded, int pLen) { int correct = 0; /* * Check if the first two bytes are 0 2 */ correct |= (encoded[0] ^ 2); /* * Now the padding check, check for no 0 byte in the padding */ int plen = encoded.length - ( pLen /* Lenght of the PMS */ + 1 /* Final 0-byte before PMS */ ); for (int i = 1; i < plen; i++) { int tmp = encoded[i]; tmp |= tmp >> 1; tmp |= tmp >> 2; tmp |= tmp >> 4; correct |= (tmp & 1) - 1; } /* * Make sure the padding ends with a 0 byte. */ correct |= encoded[encoded.length - (pLen + 1)]; /* * Return 0 or 1, depending on the result. */ correct |= correct >> 1; correct |= correct >> 2; correct |= correct >> 4; return ~((correct & 1) - 1); } /** * Decode PKCS#1.5 encoding, and return a random value if the padding is not correct. * * @param in The encrypted block. * @param inOff Offset in the encrypted block. * @param inLen Length of the encrypted block. * //@param pLen Length of the desired output. * @return The plaintext without padding, or a random value if the padding was incorrect. * @throws InvalidCipherTextException */ private byte[] decodeBlockOrRandom(byte[] in, int inOff, int inLen) throws InvalidCipherTextException { if (!forPrivateKey) { throw new InvalidCipherTextException("sorry, this method is only for decryption, not for signing"); } byte[] block = engine.processBlock(in, inOff, inLen); byte[] random; if (this.fallback == null) { random = new byte[this.pLen]; this.random.nextBytes(random); } else { random = fallback; } byte[] data = (useStrictLength & (block.length != engine.getOutputBlockSize())) ? blockBuffer : block; /* * Check the padding. */ int correct = PKCS1Encoding.checkPkcs1Encoding(data, this.pLen); /* * Now, to a constant time constant memory copy of the decrypted value * or the random value, depending on the validity of the padding. */ byte[] result = new byte[this.pLen]; for (int i = 0; i < this.pLen; i++) { result[i] = (byte)((data[i + (data.length - pLen)] & (~correct)) | (random[i] & correct)); } Arrays.fill(data, (byte)0); return result; } /** * @throws InvalidCipherTextException if the decrypted block is not in PKCS1 format. */ private byte[] decodeBlock( byte[] in, int inOff, int inLen) throws InvalidCipherTextException { /* * If the length of the expected plaintext is known, we use a constant-time decryption. * If the decryption fails, we return a random value. */ if (this.pLen != -1) { return this.decodeBlockOrRandom(in, inOff, inLen); } byte[] block = engine.processBlock(in, inOff, inLen); boolean incorrectLength = (useStrictLength & (block.length != engine.getOutputBlockSize())); byte[] data; if (block.length < getOutputBlockSize()) { data = blockBuffer; } else { data = block; } byte type = data[0]; boolean badType; if (forPrivateKey) { badType = (type != 2); } else { badType = (type != 1); } // // find and extract the message block. // int start = findStart(type, data); start++; // data should start at the next byte if (badType | start < HEADER_LENGTH) { Arrays.fill(data, (byte)0); throw new InvalidCipherTextException("block incorrect"); } // if we get this far, it's likely to be a genuine encoding error if (incorrectLength) { Arrays.fill(data, (byte)0); throw new InvalidCipherTextException("block incorrect size"); } byte[] result = new byte[data.length - start]; System.arraycopy(data, start, result, 0, result.length); return result; } private int findStart(byte type, byte[] block) throws InvalidCipherTextException { int start = -1; boolean padErr = false; for (int i = 1; i != block.length; i++) { byte pad = block[i]; if (pad == 0 & start < 0) { start = i; } padErr |= (type == 1 & start < 0 & pad != (byte)0xff); } if (padErr) { return -1; } return start; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy