All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.bouncycastle.crypto.digests.SM3Digest Maven / Gradle / Ivy

Go to download

The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for Java 1.5 and later with debug enabled.

There is a newer version: 1.70
Show newest version
package org.bouncycastle.crypto.digests;

import org.bouncycastle.util.Memoable;
import org.bouncycastle.util.Pack;

/**
 * Implementation of Chinese SM3 digest as described at
 * http://tools.ietf.org/html/draft-shen-sm3-hash-01
 * and at .... ( Chinese PDF )
 * 

* The specification says "process a bit stream", * but this is written to process bytes in blocks of 4, * meaning this will process 32-bit word groups. * But so do also most other digest specifications, * including the SHA-256 which was a origin for * this specification. */ public class SM3Digest extends GeneralDigest { private static final int DIGEST_LENGTH = 32; // bytes private static final int BLOCK_SIZE = 64 / 4; // of 32 bit ints (16 ints) private int[] V = new int[DIGEST_LENGTH / 4]; // in 32 bit ints (8 ints) private int[] inwords = new int[BLOCK_SIZE]; private int xOff; // Work-bufs used within processBlock() private int[] W = new int[68]; // Round constant T for processBlock() which is 32 bit integer rolled left up to (63 MOD 32) bit positions. private static final int[] T = new int[64]; static { for (int i = 0; i < 16; ++i) { int t = 0x79CC4519; T[i] = (t << i) | (t >>> (32 - i)); } for (int i = 16; i < 64; ++i) { int n = i % 32; int t = 0x7A879D8A; T[i] = (t << n) | (t >>> (32 - n)); } } /** * Standard constructor */ public SM3Digest() { reset(); } /** * Copy constructor. This will copy the state of the provided * message digest. */ public SM3Digest(SM3Digest t) { super(t); copyIn(t); } private void copyIn(SM3Digest t) { System.arraycopy(t.V, 0, this.V, 0, this.V.length); System.arraycopy(t.inwords, 0, this.inwords, 0, this.inwords.length); xOff = t.xOff; } public String getAlgorithmName() { return "SM3"; } public int getDigestSize() { return DIGEST_LENGTH; } public Memoable copy() { return new SM3Digest(this); } public void reset(Memoable other) { SM3Digest d = (SM3Digest)other; super.copyIn(d); copyIn(d); } /** * reset the chaining variables */ public void reset() { super.reset(); this.V[0] = 0x7380166F; this.V[1] = 0x4914B2B9; this.V[2] = 0x172442D7; this.V[3] = 0xDA8A0600; this.V[4] = 0xA96F30BC; this.V[5] = 0x163138AA; this.V[6] = 0xE38DEE4D; this.V[7] = 0xB0FB0E4E; this.xOff = 0; } public int doFinal(byte[] out, int outOff) { finish(); Pack.intToBigEndian(V, out, outOff); reset(); return DIGEST_LENGTH; } protected void processWord(byte[] in, int inOff) { // Note: Inlined for performance // this.inwords[xOff] = Pack.bigEndianToInt(in, inOff); int n = (((in[inOff] & 0xff) << 24) | ((in[++inOff] & 0xff) << 16) | ((in[++inOff] & 0xff) << 8) | ((in[++inOff] & 0xff))); this.inwords[this.xOff] = n; ++this.xOff; if (this.xOff >= 16) { processBlock(); } } protected void processLength(long bitLength) { if (this.xOff > (BLOCK_SIZE - 2)) { // xOff == 15 --> can't fit the 64 bit length field at tail.. this.inwords[this.xOff] = 0; // fill with zero ++this.xOff; processBlock(); } // Fill with zero words, until reach 2nd to last slot while (this.xOff < (BLOCK_SIZE - 2)) { this.inwords[this.xOff] = 0; ++this.xOff; } // Store input data length in BITS this.inwords[this.xOff++] = (int)(bitLength >>> 32); this.inwords[this.xOff++] = (int)(bitLength); } /* 3.4.2. Constants Tj = 79cc4519 when 0 < = j < = 15 Tj = 7a879d8a when 16 < = j < = 63 3.4.3. Boolean function FFj(X;Y;Z) = X XOR Y XOR Z when 0 < = j < = 15 = (X AND Y) OR (X AND Z) OR (Y AND Z) when 16 < = j < = 63 GGj(X;Y;Z) = X XOR Y XOR Z when 0 < = j < = 15 = (X AND Y) OR (NOT X AND Z) when 16 < = j < = 63 The X, Y, Z in the fomular are words!GBP 3.4.4. Permutation function P0(X) = X XOR (X <<< 9) XOR (X <<< 17) ## ROLL, not SHIFT P1(X) = X XOR (X <<< 15) XOR (X <<< 23) ## ROLL, not SHIFT The X in the fomular are a word. ---------- Each ROLL converted to Java expression: ROLL 9 : ((x << 9) | (x >>> (32-9)))) ROLL 17 : ((x << 17) | (x >>> (32-17))) ROLL 15 : ((x << 15) | (x >>> (32-15))) ROLL 23 : ((x << 23) | (x >>> (32-23))) */ private int P0(final int x) { final int r9 = ((x << 9) | (x >>> (32 - 9))); final int r17 = ((x << 17) | (x >>> (32 - 17))); return (x ^ r9 ^ r17); } private int P1(final int x) { final int r15 = ((x << 15) | (x >>> (32 - 15))); final int r23 = ((x << 23) | (x >>> (32 - 23))); return (x ^ r15 ^ r23); } private int FF0(final int x, final int y, final int z) { return (x ^ y ^ z); } private int FF1(final int x, final int y, final int z) { return ((x & y) | (x & z) | (y & z)); } private int GG0(final int x, final int y, final int z) { return (x ^ y ^ z); } private int GG1(final int x, final int y, final int z) { return ((x & y) | ((~x) & z)); } protected void processBlock() { for (int j = 0; j < 16; ++j) { this.W[j] = this.inwords[j]; } for (int j = 16; j < 68; ++j) { int wj3 = this.W[j - 3]; int r15 = ((wj3 << 15) | (wj3 >>> (32 - 15))); int wj13 = this.W[j - 13]; int r7 = ((wj13 << 7) | (wj13 >>> (32 - 7))); this.W[j] = P1(this.W[j - 16] ^ this.W[j - 9] ^ r15) ^ r7 ^ this.W[j - 6]; } int A = this.V[0]; int B = this.V[1]; int C = this.V[2]; int D = this.V[3]; int E = this.V[4]; int F = this.V[5]; int G = this.V[6]; int H = this.V[7]; for (int j = 0; j < 16; ++j) { int a12 = ((A << 12) | (A >>> (32 - 12))); int s1_ = a12 + E + T[j]; int SS1 = ((s1_ << 7) | (s1_ >>> (32 - 7))); int SS2 = SS1 ^ a12; int Wj = W[j]; int W1j = Wj ^ W[j + 4]; int TT1 = FF0(A, B, C) + D + SS2 + W1j; int TT2 = GG0(E, F, G) + H + SS1 + Wj; D = C; C = ((B << 9) | (B >>> (32 - 9))); B = A; A = TT1; H = G; G = ((F << 19) | (F >>> (32 - 19))); F = E; E = P0(TT2); } // Different FF,GG functions on rounds 16..63 for (int j = 16; j < 64; ++j) { int a12 = ((A << 12) | (A >>> (32 - 12))); int s1_ = a12 + E + T[j]; int SS1 = ((s1_ << 7) | (s1_ >>> (32 - 7))); int SS2 = SS1 ^ a12; int Wj = W[j]; int W1j = Wj ^ W[j + 4]; int TT1 = FF1(A, B, C) + D + SS2 + W1j; int TT2 = GG1(E, F, G) + H + SS1 + Wj; D = C; C = ((B << 9) | (B >>> (32 - 9))); B = A; A = TT1; H = G; G = ((F << 19) | (F >>> (32 - 19))); F = E; E = P0(TT2); } this.V[0] ^= A; this.V[1] ^= B; this.V[2] ^= C; this.V[3] ^= D; this.V[4] ^= E; this.V[5] ^= F; this.V[6] ^= G; this.V[7] ^= H; this.xOff = 0; } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy