org.bouncycastle.math.ec.custom.gm.SM2P256V1FieldElement Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of bcprov-debug-jdk15to18 Show documentation
Show all versions of bcprov-debug-jdk15to18 Show documentation
The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for JDK 1.5 to JDK 1.8.
package org.bouncycastle.math.ec.custom.gm;
import java.math.BigInteger;
import org.bouncycastle.math.ec.ECFieldElement;
import org.bouncycastle.math.raw.Mod;
import org.bouncycastle.math.raw.Nat256;
import org.bouncycastle.util.Arrays;
import org.bouncycastle.util.encoders.Hex;
public class SM2P256V1FieldElement extends ECFieldElement.AbstractFp
{
public static final BigInteger Q = new BigInteger(1,
Hex.decodeStrict("FFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFFFFFFFFFFF"));
protected int[] x;
public SM2P256V1FieldElement(BigInteger x)
{
if (x == null || x.signum() < 0 || x.compareTo(Q) >= 0)
{
throw new IllegalArgumentException("x value invalid for SM2P256V1FieldElement");
}
this.x = SM2P256V1Field.fromBigInteger(x);
}
public SM2P256V1FieldElement()
{
this.x = Nat256.create();
}
protected SM2P256V1FieldElement(int[] x)
{
this.x = x;
}
public boolean isZero()
{
return Nat256.isZero(x);
}
public boolean isOne()
{
return Nat256.isOne(x);
}
public boolean testBitZero()
{
return Nat256.getBit(x, 0) == 1;
}
public BigInteger toBigInteger()
{
return Nat256.toBigInteger(x);
}
public String getFieldName()
{
return "SM2P256V1Field";
}
public int getFieldSize()
{
return Q.bitLength();
}
public ECFieldElement add(ECFieldElement b)
{
int[] z = Nat256.create();
SM2P256V1Field.add(x, ((SM2P256V1FieldElement)b).x, z);
return new SM2P256V1FieldElement(z);
}
public ECFieldElement addOne()
{
int[] z = Nat256.create();
SM2P256V1Field.addOne(x, z);
return new SM2P256V1FieldElement(z);
}
public ECFieldElement subtract(ECFieldElement b)
{
int[] z = Nat256.create();
SM2P256V1Field.subtract(x, ((SM2P256V1FieldElement)b).x, z);
return new SM2P256V1FieldElement(z);
}
public ECFieldElement multiply(ECFieldElement b)
{
int[] z = Nat256.create();
SM2P256V1Field.multiply(x, ((SM2P256V1FieldElement)b).x, z);
return new SM2P256V1FieldElement(z);
}
public ECFieldElement divide(ECFieldElement b)
{
// return multiply(b.invert());
int[] z = Nat256.create();
Mod.invert(SM2P256V1Field.P, ((SM2P256V1FieldElement)b).x, z);
SM2P256V1Field.multiply(z, x, z);
return new SM2P256V1FieldElement(z);
}
public ECFieldElement negate()
{
int[] z = Nat256.create();
SM2P256V1Field.negate(x, z);
return new SM2P256V1FieldElement(z);
}
public ECFieldElement square()
{
int[] z = Nat256.create();
SM2P256V1Field.square(x, z);
return new SM2P256V1FieldElement(z);
}
public ECFieldElement invert()
{
// return new SM2P256V1FieldElement(toBigInteger().modInverse(Q));
int[] z = Nat256.create();
Mod.invert(SM2P256V1Field.P, x, z);
return new SM2P256V1FieldElement(z);
}
/**
* return a sqrt root - the routine verifies that the calculation returns the right value - if
* none exists it returns null.
*/
public ECFieldElement sqrt()
{
/*
* Raise this element to the exponent 2^254 - 2^222 - 2^94 + 2^62
*
* Breaking up the exponent's binary representation into "repunits", we get:
* { 31 1s } { 1 0s } { 128 1s } { 31 0s } { 1 1s } { 62 0s}
*
* We use an addition chain for the beginning: [1], 2, 3, 6, 12, [24], 30, [31]
*/
int[] x1 = this.x;
if (Nat256.isZero(x1) || Nat256.isOne(x1))
{
return this;
}
int[] x2 = Nat256.create();
SM2P256V1Field.square(x1, x2);
SM2P256V1Field.multiply(x2, x1, x2);
int[] x4 = Nat256.create();
SM2P256V1Field.squareN(x2, 2, x4);
SM2P256V1Field.multiply(x4, x2, x4);
int[] x6 = Nat256.create();
SM2P256V1Field.squareN(x4, 2, x6);
SM2P256V1Field.multiply(x6, x2, x6);
int[] x12 = x2;
SM2P256V1Field.squareN(x6, 6, x12);
SM2P256V1Field.multiply(x12, x6, x12);
int[] x24 = Nat256.create();
SM2P256V1Field.squareN(x12, 12, x24);
SM2P256V1Field.multiply(x24, x12, x24);
int[] x30 = x12;
SM2P256V1Field.squareN(x24, 6, x30);
SM2P256V1Field.multiply(x30, x6, x30);
int[] x31 = x6;
SM2P256V1Field.square(x30, x31);
SM2P256V1Field.multiply(x31, x1, x31);
int[] t1 = x24;
SM2P256V1Field.squareN(x31, 31, t1);
int[] x62 = x30;
SM2P256V1Field.multiply(t1, x31, x62);
SM2P256V1Field.squareN(t1, 32, t1);
SM2P256V1Field.multiply(t1, x62, t1);
SM2P256V1Field.squareN(t1, 62, t1);
SM2P256V1Field.multiply(t1, x62, t1);
SM2P256V1Field.squareN(t1, 4, t1);
SM2P256V1Field.multiply(t1, x4, t1);
SM2P256V1Field.squareN(t1, 32, t1);
SM2P256V1Field.multiply(t1, x1, t1);
SM2P256V1Field.squareN(t1, 62, t1);
int[] t2 = x4;
SM2P256V1Field.square(t1, t2);
return Nat256.eq(x1, t2) ? new SM2P256V1FieldElement(t1) : null;
}
public boolean equals(Object other)
{
if (other == this)
{
return true;
}
if (!(other instanceof SM2P256V1FieldElement))
{
return false;
}
SM2P256V1FieldElement o = (SM2P256V1FieldElement)other;
return Nat256.eq(x, o.x);
}
public int hashCode()
{
return Q.hashCode() ^ Arrays.hashCode(x, 0, 8);
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy