org.bouncycastle.math.ec.custom.sec.SecP384R1Field Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of bcprov-debug-jdk15to18 Show documentation
Show all versions of bcprov-debug-jdk15to18 Show documentation
The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for JDK 1.5 to JDK 1.8.
package org.bouncycastle.math.ec.custom.sec;
import java.math.BigInteger;
import org.bouncycastle.math.raw.Nat;
import org.bouncycastle.math.raw.Nat384;
public class SecP384R1Field
{
private static final long M = 0xFFFFFFFFL;
// 2^384 - 2^128 - 2^96 + 2^32 - 1
static final int[] P = new int[]{ 0xFFFFFFFF, 0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFE, 0xFFFFFFFF,
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF };
static final int[] PExt = new int[]{ 0x00000001, 0xFFFFFFFE, 0x00000000, 0x00000002, 0x00000000, 0xFFFFFFFE,
0x00000000, 0x00000002, 0x00000001, 0x00000000, 0x00000000, 0x00000000, 0xFFFFFFFE, 0x00000001, 0x00000000,
0xFFFFFFFE, 0xFFFFFFFD, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF };
private static final int[] PExtInv = new int[]{ 0xFFFFFFFF, 0x00000001, 0xFFFFFFFF, 0xFFFFFFFD, 0xFFFFFFFF, 0x00000001,
0xFFFFFFFF, 0xFFFFFFFD, 0xFFFFFFFE, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x00000001, 0xFFFFFFFE, 0xFFFFFFFF,
0x00000001, 0x00000002 };
private static final int P11 = 0xFFFFFFFF;
private static final int PExt23 = 0xFFFFFFFF;
public static void add(int[] x, int[] y, int[] z)
{
int c = Nat.add(12, x, y, z);
if (c != 0 || (z[11] == P11 && Nat.gte(12, z, P)))
{
addPInvTo(z);
}
}
public static void addExt(int[] xx, int[] yy, int[] zz)
{
int c = Nat.add(24, xx, yy, zz);
if (c != 0 || (zz[23] == PExt23 && Nat.gte(24, zz, PExt)))
{
if (Nat.addTo(PExtInv.length, PExtInv, zz) != 0)
{
Nat.incAt(24, zz, PExtInv.length);
}
}
}
public static void addOne(int[] x, int[] z)
{
int c = Nat.inc(12, x, z);
if (c != 0 || (z[11] == P11 && Nat.gte(12, z, P)))
{
addPInvTo(z);
}
}
public static int[] fromBigInteger(BigInteger x)
{
int[] z = Nat.fromBigInteger(384, x);
if (z[11] == P11 && Nat.gte(12, z, P))
{
Nat.subFrom(12, P, z);
}
return z;
}
public static void half(int[] x, int[] z)
{
if ((x[0] & 1) == 0)
{
Nat.shiftDownBit(12, x, 0, z);
}
else
{
int c = Nat.add(12, x, P, z);
Nat.shiftDownBit(12, z, c);
}
}
public static void multiply(int[] x, int[] y, int[] z)
{
int[] tt = Nat.create(24);
Nat384.mul(x, y, tt);
reduce(tt, z);
}
public static void negate(int[] x, int[] z)
{
if (Nat.isZero(12, x))
{
Nat.zero(12, z);
}
else
{
Nat.sub(12, P, x, z);
}
}
public static void reduce(int[] xx, int[] z)
{
long xx16 = xx[16] & M, xx17 = xx[17] & M, xx18 = xx[18] & M, xx19 = xx[19] & M;
long xx20 = xx[20] & M, xx21 = xx[21] & M, xx22 = xx[22] & M, xx23 = xx[23] & M;
final long n = 1;
long t0 = (xx[12] & M) + xx20 - n;
long t1 = (xx[13] & M) + xx22;
long t2 = (xx[14] & M) + xx22 + xx23;
long t3 = (xx[15] & M) + xx23;
long t4 = xx17 + xx21;
long t5 = xx21 - xx23;
long t6 = xx22 - xx23;
long t7 = t0 + t5;
long cc = 0;
cc += (xx[0] & M) + t7;
z[0] = (int)cc;
cc >>= 32;
cc += (xx[1] & M) + xx23 - t0 + t1;
z[1] = (int)cc;
cc >>= 32;
cc += (xx[2] & M) - xx21 - t1 + t2;
z[2] = (int)cc;
cc >>= 32;
cc += (xx[3] & M) - t2 + t3 + t7;
z[3] = (int)cc;
cc >>= 32;
cc += (xx[4] & M) + xx16 + xx21 + t1 - t3 + t7;
z[4] = (int)cc;
cc >>= 32;
cc += (xx[5] & M) - xx16 + t1 + t2 + t4;
z[5] = (int)cc;
cc >>= 32;
cc += (xx[6] & M) + xx18 - xx17 + t2 + t3;
z[6] = (int)cc;
cc >>= 32;
cc += (xx[7] & M) + xx16 + xx19 - xx18 + t3;
z[7] = (int)cc;
cc >>= 32;
cc += (xx[8] & M) + xx16 + xx17 + xx20 - xx19;
z[8] = (int)cc;
cc >>= 32;
cc += (xx[9] & M) + xx18 - xx20 + t4;
z[9] = (int)cc;
cc >>= 32;
cc += (xx[10] & M) + xx18 + xx19 - t5 + t6;
z[10] = (int)cc;
cc >>= 32;
cc += (xx[11] & M) + xx19 + xx20 - t6;
z[11] = (int)cc;
cc >>= 32;
cc += n;
// assert cc >= 0;
reduce32((int)cc, z);
}
public static void reduce32(int x, int[] z)
{
long cc = 0;
if (x != 0)
{
long xx12 = x & M;
cc += (z[0] & M) + xx12;
z[0] = (int)cc;
cc >>= 32;
cc += (z[1] & M) - xx12;
z[1] = (int)cc;
cc >>= 32;
if (cc != 0)
{
cc += (z[2] & M);
z[2] = (int)cc;
cc >>= 32;
}
cc += (z[3] & M) + xx12;
z[3] = (int)cc;
cc >>= 32;
cc += (z[4] & M) + xx12;
z[4] = (int)cc;
cc >>= 32;
// assert cc == 0 || cc == 1;
}
if ((cc != 0 && Nat.incAt(12, z, 5) != 0)
|| (z[11] == P11 && Nat.gte(12, z, P)))
{
addPInvTo(z);
}
}
public static void square(int[] x, int[] z)
{
int[] tt = Nat.create(24);
Nat384.square(x, tt);
reduce(tt, z);
}
public static void squareN(int[] x, int n, int[] z)
{
// assert n > 0;
int[] tt = Nat.create(24);
Nat384.square(x, tt);
reduce(tt, z);
while (--n > 0)
{
Nat384.square(z, tt);
reduce(tt, z);
}
}
public static void subtract(int[] x, int[] y, int[] z)
{
int c = Nat.sub(12, x, y, z);
if (c != 0)
{
subPInvFrom(z);
}
}
public static void subtractExt(int[] xx, int[] yy, int[] zz)
{
int c = Nat.sub(24, xx, yy, zz);
if (c != 0)
{
if (Nat.subFrom(PExtInv.length, PExtInv, zz) != 0)
{
Nat.decAt(24, zz, PExtInv.length);
}
}
}
public static void twice(int[] x, int[] z)
{
int c = Nat.shiftUpBit(12, x, 0, z);
if (c != 0 || (z[11] == P11 && Nat.gte(12, z, P)))
{
addPInvTo(z);
}
}
private static void addPInvTo(int[] z)
{
long c = (z[0] & M) + 1;
z[0] = (int)c;
c >>= 32;
c += (z[1] & M) - 1;
z[1] = (int)c;
c >>= 32;
if (c != 0)
{
c += (z[2] & M);
z[2] = (int)c;
c >>= 32;
}
c += (z[3] & M) + 1;
z[3] = (int)c;
c >>= 32;
c += (z[4] & M) + 1;
z[4] = (int)c;
c >>= 32;
if (c != 0)
{
Nat.incAt(12, z, 5);
}
}
private static void subPInvFrom(int[] z)
{
long c = (z[0] & M) - 1;
z[0] = (int)c;
c >>= 32;
c += (z[1] & M) + 1;
z[1] = (int)c;
c >>= 32;
if (c != 0)
{
c += (z[2] & M);
z[2] = (int)c;
c >>= 32;
}
c += (z[3] & M) - 1;
z[3] = (int)c;
c >>= 32;
c += (z[4] & M) - 1;
z[4] = (int)c;
c >>= 32;
if (c != 0)
{
Nat.decAt(12, z, 5);
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy