org.bouncycastle.pqc.crypto.saber.Poly Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of bcprov-debug-jdk15to18 Show documentation
Show all versions of bcprov-debug-jdk15to18 Show documentation
The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for JDK 1.5 to JDK 1.8.
package org.bouncycastle.pqc.crypto.saber;
import org.bouncycastle.crypto.Xof;
import org.bouncycastle.crypto.digests.SHAKEDigest;
class Poly
{
private static final int KARATSUBA_N = 64;
private static int SCHB_N = 16;
private final int N_RES;
private final int N_SB;
private final int N_SB_RES;
private final int SABER_N;
private final int SABER_L;
private final SABEREngine engine;
private final Utils utils;
public Poly(SABEREngine engine)
{
this.engine = engine;
this.SABER_L = engine.getSABER_L();
this.SABER_N = engine.getSABER_N();
this.N_RES = (SABER_N << 1);
this.N_SB = (SABER_N >> 2);
this.N_SB_RES = (2 * N_SB - 1);
this.utils = engine.getUtils();
}
public void GenMatrix(short[][][] A, byte[] seed)
{
byte[] buf = new byte[SABER_L * engine.getSABER_POLYVECBYTES()];
int i;
Xof digest = new SHAKEDigest(128);
digest.update(seed, 0, engine.getSABER_SEEDBYTES());
digest.doFinal(buf, 0, buf.length);
for (i = 0; i < SABER_L; i++)
{
utils.BS2POLVECq(buf, i * engine.getSABER_POLYVECBYTES(), A[i]);
}
}
public void GenSecret(short[][] s, byte[] seed)
{
byte[] buf = new byte[SABER_L * engine.getSABER_POLYCOINBYTES()];
int i;
Xof digest = new SHAKEDigest(128);
digest.update(seed, 0, engine.getSABER_NOISE_SEEDBYTES());
digest.doFinal(buf, 0, buf.length);
for (i = 0; i < SABER_L; i++)
{
cbd(s[i], buf, i * engine.getSABER_POLYCOINBYTES());
}
}
private long load_littleendian(byte[] x, int offset, int bytes)
{
int i;
long r = (x[offset + 0] & 0xff);
for (i = 1; i < bytes; i++)
{
r |= ((long) (x[offset + i] & 0xff)) << (8 * i);
}
return r;
}
private void cbd(short[] s, byte[] buf, int offset)
{
int[] a = new int[4], b = new int[4];
int i, j;
if (engine.getSABER_MU() == 6)
{
int t, d;
for (i = 0; i < SABER_N / 4; i++)
{
t = (int) load_littleendian(buf, offset + 3 * i, 3);
d = 0;
for (j = 0; j < 3; j++)
d += (t >> j) & 0x249249;
a[0] = d & 0x7;
b[0] = (d >>> 3) & 0x7;
a[1] = (d >>> 6) & 0x7;
b[1] = (d >>> 9) & 0x7;
a[2] = (d >>> 12) & 0x7;
b[2] = (d >>> 15) & 0x7;
a[3] = (d >>> 18) & 0x7;
b[3] = (d >>> 21);
s[4 * i + 0] = (short) (a[0] - b[0]);
s[4 * i + 1] = (short) (a[1] - b[1]);
s[4 * i + 2] = (short) (a[2] - b[2]);
s[4 * i + 3] = (short) (a[3] - b[3]);
}
}
else if (engine.getSABER_MU() == 8)
{
int t, d;
for (i = 0; i < SABER_N / 4; i++)
{
t = (int) load_littleendian(buf, offset + 4 * i, 4);
d = 0;
for (j = 0; j < 4; j++)
d += (t >>> j) & 0x11111111;
a[0] = d & 0xf;
b[0] = (d >>> 4) & 0xf;
a[1] = (d >>> 8) & 0xf;
b[1] = (d >>> 12) & 0xf;
a[2] = (d >>> 16) & 0xf;
b[2] = (d >>> 20) & 0xf;
a[3] = (d >>> 24) & 0xf;
b[3] = (d >>> 28);
s[4 * i + 0] = (short) (a[0] - b[0]);
s[4 * i + 1] = (short) (a[1] - b[1]);
s[4 * i + 2] = (short) (a[2] - b[2]);
s[4 * i + 3] = (short) (a[3] - b[3]);
}
}
else if (engine.getSABER_MU() == 10)
{
long t, d;
for (i = 0; i < SABER_N / 4; i++)
{
t = load_littleendian(buf, offset + 5 * i, 5);
d = 0;
for (j = 0; j < 5; j++)
d += (t >>> j) & 0x0842108421L;
a[0] = (int) (d & 0x1f);
b[0] = (int) ((d >>> 5) & 0x1f);
a[1] = (int) ((d >>> 10) & 0x1f);
b[1] = (int) ((d >>> 15) & 0x1f);
a[2] = (int) ((d >>> 20) & 0x1f);
b[2] = (int) ((d >>> 25) & 0x1f);
a[3] = (int) ((d >>> 30) & 0x1f);
b[3] = (int) (d >>> 35);
s[4 * i + 0] = (short) (a[0] - b[0]);
s[4 * i + 1] = (short) (a[1] - b[1]);
s[4 * i + 2] = (short) (a[2] - b[2]);
s[4 * i + 3] = (short) (a[3] - b[3]);
}
}
}
private short OVERFLOWING_MUL(int x, int y)
{
return (short) (x * y);
}
private void karatsuba_simple(int[] a_1, int[] b_1, int[] result_final)
{
int[] d01 = new int[KARATSUBA_N / 2 - 1];
int[] d0123 = new int[KARATSUBA_N / 2 - 1];
int[] d23 = new int[KARATSUBA_N / 2 - 1];
int[] result_d01 = new int[KARATSUBA_N - 1];
int i, j;
int acc1, acc2, acc3, acc4, acc5, acc6, acc7, acc8, acc9, acc10;
for (i = 0; i < KARATSUBA_N / 4; i++)
{
acc1 = a_1[i]; //a0
acc2 = a_1[i + KARATSUBA_N / 4]; //a1
acc3 = a_1[i + 2 * KARATSUBA_N / 4]; //a2
acc4 = a_1[i + 3 * KARATSUBA_N / 4]; //a3
for (j = 0; j < KARATSUBA_N / 4; j++)
{
acc5 = b_1[j]; //b0
acc6 = b_1[j + KARATSUBA_N / 4]; //b1
result_final[i + j + 0 * KARATSUBA_N / 4] = (result_final[i + j + 0 * KARATSUBA_N / 4] + OVERFLOWING_MUL(acc1, acc5));
result_final[i + j + 2 * KARATSUBA_N / 4] = (result_final[i + j + 2 * KARATSUBA_N / 4] + OVERFLOWING_MUL(acc2, acc6));
acc7 = (acc5 + acc6); //b01
acc8 = (acc1 + acc2); //a01
d01[i + j] = (int) (d01[i + j] + (acc7 * (long) acc8));
//--------------------------------------------------------
acc7 = b_1[j + 2 * KARATSUBA_N / 4]; //b2
acc8 = b_1[j + 3 * KARATSUBA_N / 4]; //b3
result_final[i + j + 4 * KARATSUBA_N / 4] =
(result_final[i + j + 4 * KARATSUBA_N / 4] +
OVERFLOWING_MUL(acc7, acc3));
result_final[i + j + 6 * KARATSUBA_N / 4] =
(result_final[i + j + 6 * KARATSUBA_N / 4] +
OVERFLOWING_MUL(acc8, acc4));
acc9 = (acc3 + acc4);
acc10 = (acc7 + acc8);
d23[i + j] = (d23[i + j] + OVERFLOWING_MUL(acc9, acc10));
//--------------------------------------------------------
acc5 = (acc5 + acc7); //b02
acc7 = (acc1 + acc3); //a02
result_d01[i + j + 0 * KARATSUBA_N / 4] =
(result_d01[i + j + 0 * KARATSUBA_N / 4] +
OVERFLOWING_MUL(acc5, acc7));
acc6 = (acc6 + acc8); //b13
acc8 = (acc2 + acc4);
result_d01[i + j + 2 * KARATSUBA_N / 4] =
(result_d01[i + j + 2 * KARATSUBA_N / 4] +
OVERFLOWING_MUL(acc6, acc8));
acc5 = (acc5 + acc6);
acc7 = (acc7 + acc8);
d0123[i + j] = (d0123[i + j] + OVERFLOWING_MUL(acc5, acc7));
}
}
// 2nd last stage
for (i = 0; i < KARATSUBA_N / 2 - 1; i++)
{
d0123[i] = (d0123[i] - result_d01[i + 0 * KARATSUBA_N / 4] - result_d01[i + 2 * KARATSUBA_N / 4]);
d01[i] = (d01[i] - result_final[i + 0 * KARATSUBA_N / 4] - result_final[i + 2 * KARATSUBA_N / 4]);
d23[i] = (d23[i] - result_final[i + 4 * KARATSUBA_N / 4] - result_final[i + 6 * KARATSUBA_N / 4]);
}
for (i = 0; i < KARATSUBA_N / 2 - 1; i++)
{
result_d01[i + 1 * KARATSUBA_N / 4] = (result_d01[i + 1 * KARATSUBA_N / 4] + d0123[i]);
result_final[i + 1 * KARATSUBA_N / 4] = (result_final[i + 1 * KARATSUBA_N / 4] + d01[i]);
result_final[i + 5 * KARATSUBA_N / 4] = (result_final[i + 5 * KARATSUBA_N / 4] + d23[i]);
}
// Last stage
for (i = 0; i < KARATSUBA_N - 1; i++)
{
result_d01[i] = (result_d01[i] - result_final[i] - result_final[i + KARATSUBA_N]);
}
for (i = 0; i < KARATSUBA_N - 1; i++)
{
result_final[i + 1 * KARATSUBA_N / 2] = (result_final[i + 1 * KARATSUBA_N / 2] + result_d01[i]);
}
}
private void toom_cook_4way(short[] a1, short[] b1, short[] result)
{
int inv3 = 43691, inv9 = 36409, inv15 = 61167;
int[] aw1 = new int[N_SB],
aw2 = new int[N_SB],
aw3 = new int[N_SB],
aw4 = new int[N_SB],
aw5 = new int[N_SB],
aw6 = new int[N_SB],
aw7 = new int[N_SB];
int[] bw1 = new int[N_SB],
bw2 = new int[N_SB],
bw3 = new int[N_SB],
bw4 = new int[N_SB],
bw5 = new int[N_SB],
bw6 = new int[N_SB],
bw7 = new int[N_SB];
int[] w1 = new int[N_SB_RES],
w2 = new int[N_SB_RES],
w3 = new int[N_SB_RES],
w4 = new int[N_SB_RES],
w5 = new int[N_SB_RES],
w6 = new int[N_SB_RES],
w7 = new int[N_SB_RES];
int r0, r1, r2, r3, r4, r5, r6, r7;
short[] C;
C = result;
int i, j;
// EVALUATION
for (j = 0; j < N_SB; ++j)
{
r0 = a1[j];
r1 = a1[j + N_SB];
r2 = a1[j + N_SB * 2];
r3 = a1[j + N_SB * 3];
r4 = (short) (r0 + r2);
r5 = (short) (r1 + r3);
r6 = (short) (r4 + r5);
r7 = (short) (r4 - r5);
aw3[j] = r6;
aw4[j] = r7;
r4 = (short) (((r0 << 2) + r2) << 1);
r5 = (short) ((r1 << 2) + r3);
r6 = (short) (r4 + r5);
r7 = (short) (r4 - r5);
aw5[j] = r6;
aw6[j] = r7;
r4 = (short) ((r3 << 3) + (r2 << 2) + (r1 << 1) + r0);
aw2[j] = r4;
aw7[j] = r0;
aw1[j] = r3;
}
for (j = 0; j < N_SB; ++j)
{
r0 = b1[j];
r1 = b1[j + N_SB];
r2 = b1[j + N_SB * 2];
r3 = b1[j + N_SB * 3];
r4 = r0 + r2;
r5 = r1 + r3;
r6 = r4 + r5;
r7 = r4 - r5;
bw3[j] = r6;
bw4[j] = r7;
r4 = ((r0 << 2) + r2) << 1;
r5 = (r1 << 2) + r3;
r6 = r4 + r5;
r7 = r4 - r5;
bw5[j] = r6;
bw6[j] = r7;
r4 = ((r3 << 3) + (r2 << 2) + (r1 << 1) + r0);
bw2[j] = r4;
bw7[j] = r0;
bw1[j] = r3;
}
// MULTIPLICATION
karatsuba_simple(aw1, bw1, w1);
karatsuba_simple(aw2, bw2, w2);
karatsuba_simple(aw3, bw3, w3);
karatsuba_simple(aw4, bw4, w4);
karatsuba_simple(aw5, bw5, w5);
karatsuba_simple(aw6, bw6, w6);
karatsuba_simple(aw7, bw7, w7);
// INTERPOLATION
for (i = 0; i < N_SB_RES; ++i)
{
r0 = w1[i];
r1 = w2[i];
r2 = w3[i];
r3 = w4[i];
r4 = w5[i];
r5 = w6[i];
r6 = w7[i];
r1 = r1 + r4;
r5 = (r5 - r4);
r3 = ((r3 & 0xffff) - (r2 & 0xffff)) >>> 1;
r4 = (r4 - r0);
r4 = (r4 - (r6 << 6));
r4 = ((r4 << 1) + r5);
r2 = (r2 + r3);
r1 = (r1 - (r2 << 6) - r2);
r2 = (r2 - r6);
r2 = (r2 - r0);
r1 = (r1 + 45 * r2);
r4 = (((((r4 & 0xffff) - (r2 << 3)) * inv3)) >> 3);
r5 = (r5 + r1);
r1 = ((r1 & 0xffff) + ((r3 & 0xffff) << 4)) * inv9 >> 1;
r3 = -(r3 + r1);
r5 = ((30 * (r1 & 0xffff) - (r5 & 0xffff)) * inv15) >> 2;
r2 = (r2 - r4);
r1 = (r1 - r5);
C[i] += (r6 & 0xffff);
C[i + 64] += (r5 & 0xffff);
C[i + 128] += (r4 & 0xffff);
C[i + 192] += (r3 & 0xffff);
C[i + 256] += (r2 & 0xffff);
C[i + 320] += (r1 & 0xffff);
C[i + 384] += (r0 & 0xffff);
}
}
private void poly_mul_acc(short[] a, short[] b, short[] res)
{
int i;
short[] c = new short[2 * SABER_N];
toom_cook_4way(a, b, c);
/* reduction */
for (i = SABER_N; i < 2 * SABER_N; i++)
{
res[i - SABER_N] += (c[i - SABER_N] - c[i]);
}
}
public void MatrixVectorMul(short[][][] A, short[][] s, short[][] res, int transpose)
{
int i, j;
for (i = 0; i < SABER_L; i++)
{
for (j = 0; j < SABER_L; j++)
{
if (transpose == 1)
{
poly_mul_acc(A[j][i], s[j], res[i]);
}
else
{
poly_mul_acc(A[i][j], s[j], res[i]);
}
}
}
}
public void InnerProd(short[][] b, short[][] s, short[] res)
{
int j;
for (j = 0; j < SABER_L; j++)
{
poly_mul_acc(b[j], s[j], res);
}
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy