org.bouncycastle.pqc.crypto.falcon.FalconFFT Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of bcprov-debug-jdk15to18 Show documentation
Show all versions of bcprov-debug-jdk15to18 Show documentation
The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for JDK 1.5 to JDK 1.8.
package org.bouncycastle.pqc.crypto.falcon;
class FalconFFT
{
FPREngine fpr;
FalconFFT()
{
fpr = new FPREngine();
}
// complex number functions
ComplexNumberWrapper FPC_ADD(FalconFPR a_re, FalconFPR a_im, FalconFPR b_re, FalconFPR b_im)
{
FalconFPR fpct_re, fpct_im;
fpct_re = fpr.fpr_add(a_re, b_re);
fpct_im = fpr.fpr_add(a_im, b_im);
return new ComplexNumberWrapper(fpct_re, fpct_im);
}
ComplexNumberWrapper FPC_SUB(FalconFPR a_re, FalconFPR a_im, FalconFPR b_re, FalconFPR b_im)
{
FalconFPR fpct_re, fpct_im;
fpct_re = fpr.fpr_sub(a_re, b_re);
fpct_im = fpr.fpr_sub(a_im, b_im);
return new ComplexNumberWrapper(fpct_re, fpct_im);
}
ComplexNumberWrapper FPC_MUL(FalconFPR a_re, FalconFPR a_im, FalconFPR b_re, FalconFPR b_im)
{
FalconFPR fpct_a_re, fpct_a_im;
FalconFPR fpct_b_re, fpct_b_im;
FalconFPR fpct_d_re, fpct_d_im;
fpct_a_re = (a_re);
fpct_a_im = (a_im);
fpct_b_re = (b_re);
fpct_b_im = (b_im);
fpct_d_re = fpr.fpr_sub(
fpr.fpr_mul(fpct_a_re, fpct_b_re),
fpr.fpr_mul(fpct_a_im, fpct_b_im));
fpct_d_im = fpr.fpr_add(
fpr.fpr_mul(fpct_a_re, fpct_b_im),
fpr.fpr_mul(fpct_a_im, fpct_b_re));
return new ComplexNumberWrapper(fpct_d_re, fpct_d_im);
}
ComplexNumberWrapper FPC_SQR(FalconFPR a_re, FalconFPR a_im)
{
FalconFPR fpct_a_re, fpct_a_im;
FalconFPR fpct_d_re, fpct_d_im;
fpct_a_re = (a_re);
fpct_a_im = (a_im);
fpct_d_re = fpr.fpr_sub(fpr.fpr_sqr(fpct_a_re), fpr.fpr_sqr(fpct_a_im));
fpct_d_im = fpr.fpr_double(fpr.fpr_mul(fpct_a_re, fpct_a_im));
return new ComplexNumberWrapper(fpct_d_re, fpct_d_im);
}
ComplexNumberWrapper FPC_INV(FalconFPR a_re, FalconFPR a_im)
{
FalconFPR fpct_a_re, fpct_a_im;
FalconFPR fpct_d_re, fpct_d_im;
FalconFPR fpct_m;
fpct_a_re = (a_re);
fpct_a_im = (a_im);
fpct_m = fpr.fpr_add(fpr.fpr_sqr(fpct_a_re), fpr.fpr_sqr(fpct_a_im));
fpct_m = fpr.fpr_inv(fpct_m);
fpct_d_re = fpr.fpr_mul(fpct_a_re, fpct_m);
fpct_d_im = fpr.fpr_mul(fpr.fpr_neg(fpct_a_im), fpct_m);
return new ComplexNumberWrapper(fpct_d_re, fpct_d_im);
}
ComplexNumberWrapper FPC_DIV(FalconFPR a_re, FalconFPR a_im, FalconFPR b_re, FalconFPR b_im)
{
FalconFPR fpct_a_re, fpct_a_im;
FalconFPR fpct_b_re, fpct_b_im;
FalconFPR fpct_d_re, fpct_d_im;
FalconFPR fpct_m;
fpct_a_re = (a_re);
fpct_a_im = (a_im);
fpct_b_re = (b_re);
fpct_b_im = (b_im);
fpct_m = fpr.fpr_add(fpr.fpr_sqr(fpct_b_re), fpr.fpr_sqr(fpct_b_im));
fpct_m = fpr.fpr_inv(fpct_m);
fpct_b_re = fpr.fpr_mul(fpct_b_re, fpct_m);
fpct_b_im = fpr.fpr_mul(fpr.fpr_neg(fpct_b_im), fpct_m);
fpct_d_re = fpr.fpr_sub(
fpr.fpr_mul(fpct_a_re, fpct_b_re),
fpr.fpr_mul(fpct_a_im, fpct_b_im));
fpct_d_im = fpr.fpr_add(
fpr.fpr_mul(fpct_a_re, fpct_b_im),
fpr.fpr_mul(fpct_a_im, fpct_b_re));
return new ComplexNumberWrapper(fpct_d_re, fpct_d_im);
}
/*
* Let w = exp(i*pi/N); w is a primitive 2N-th root of 1. We define the
* values w_j = w^(2j+1) for all j from 0 to N-1: these are the roots
* of X^N+1 in the field of complex numbers. A crucial property is that
* w_{N-1-j} = conj(w_j) = 1/w_j for all j.
*
* FFT representation of a polynomial f (taken modulo X^N+1) is the
* set of values f(w_j). Since f is real, conj(f(w_j)) = f(conj(w_j)),
* thus f(w_{N-1-j}) = conj(f(w_j)). We thus store only half the values,
* for j = 0 to N/2-1; the other half can be recomputed easily when (if)
* needed. A consequence is that FFT representation has the same size
* as normal representation: N/2 complex numbers use N real numbers (each
* complex number is the combination of a real and an imaginary part).
*
* We use a specific ordering which makes computations easier. Let rev()
* be the bit-reversal function over log(N) bits. For j in 0..N/2-1, we
* store the real and imaginary parts of f(w_j) in slots:
*
* Re(f(w_j)) -> slot rev(j)/2
* Im(f(w_j)) -> slot rev(j)/2+N/2
*
* (Note that rev(j) is even for j < N/2.)
*/
/* see inner.h */
void FFT(FalconFPR[] srcf, int f, int logn)
{
/*
* FFT algorithm in bit-reversal order uses the following
* iterative algorithm:
*
* t = N
* for m = 1; m < N; m *= 2:
* ht = t/2
* for i1 = 0; i1 < m; i1 ++:
* j1 = i1 * t
* s = GM[m + i1]
* for j = j1; j < (j1 + ht); j ++:
* x = f[j]
* y = s * f[j + ht]
* f[j] = x + y
* f[j + ht] = x - y
* t = ht
*
* GM[k] contains w^rev(k) for primitive root w = exp(i*pi/N).
*
* In the description above, f[] is supposed to contain complex
* numbers. In our in-memory representation, the real and
* imaginary parts of f[k] are in array slots k and k+N/2.
*
* We only keep the first half of the complex numbers. We can
* see that after the first iteration, the first and second halves
* of the array of complex numbers have separate lives, so we
* simply ignore the second part.
*/
int u;
int t, n, hn, m;
/*
* First iteration: compute f[j] + i * f[j+N/2] for all j < N/2
* (because GM[1] = w^rev(1) = w^(N/2) = i).
* In our chosen representation, this is a no-op: everything is
* already where it should be.
*/
/*
* Subsequent iterations are truncated to use only the first
* half of values.
*/
n = 1 << logn;
hn = n >> 1;
t = hn;
for (u = 1, m = 2; u < logn; u++, m <<= 1)
{
int ht, hm, i1, j1;
ht = t >> 1;
hm = m >> 1;
for (i1 = 0, j1 = 0; i1 < hm; i1++, j1 += t)
{
int j, j2;
j2 = j1 + ht;
FalconFPR s_re, s_im;
s_re = fpr.fpr_gm_tab[((m + i1) << 1) + 0];
s_im = fpr.fpr_gm_tab[((m + i1) << 1) + 1];
for (j = j1; j < j2; j++)
{
FalconFPR x_re, x_im, y_re, y_im;
ComplexNumberWrapper res;
x_re = srcf[f + j];
x_im = srcf[f + j + hn];
y_re = srcf[f + j + ht];
y_im = srcf[f + j + ht + hn];
res = FPC_MUL(y_re, y_im, s_re, s_im);
y_re = res.re;
y_im = res.im;
res = FPC_ADD(x_re, x_im, y_re, y_im);
srcf[f + j] = res.re;
srcf[f + j + hn] = res.im;
res = FPC_SUB(x_re, x_im, y_re, y_im);
srcf[f + j + ht] = res.re;
srcf[f + j + ht + hn] = res.im;
}
}
t = ht;
}
}
/* see inner.h */
void iFFT(FalconFPR[] srcf, int f, int logn)
{
/*
* Inverse FFT algorithm in bit-reversal order uses the following
* iterative algorithm:
*
* t = 1
* for m = N; m > 1; m /= 2:
* hm = m/2
* dt = t*2
* for i1 = 0; i1 < hm; i1 ++:
* j1 = i1 * dt
* s = iGM[hm + i1]
* for j = j1; j < (j1 + t); j ++:
* x = f[j]
* y = f[j + t]
* f[j] = x + y
* f[j + t] = s * (x - y)
* t = dt
* for i1 = 0; i1 < N; i1 ++:
* f[i1] = f[i1] / N
*
* iGM[k] contains (1/w)^rev(k) for primitive root w = exp(i*pi/N)
* (actually, iGM[k] = 1/GM[k] = conj(GM[k])).
*
* In the main loop (not counting the final division loop), in
* all iterations except the last, the first and second half of f[]
* (as an array of complex numbers) are separate. In our chosen
* representation, we do not keep the second half.
*
* The last iteration recombines the recomputed half with the
* implicit half, and should yield only real numbers since the
* target polynomial is real; moreover, s = i at that step.
* Thus, when considering x and y:
* y = conj(x) since the final f[j] must be real
* Therefore, f[j] is filled with 2*Re(x), and f[j + t] is
* filled with 2*Im(x).
* But we already have Re(x) and Im(x) in array slots j and j+t
* in our chosen representation. That last iteration is thus a
* simple doubling of the values in all the array.
*
* We make the last iteration a no-op by tweaking the final
* division into a division by N/2, not N.
*/
int u, n, hn, t, m;
n = 1 << logn;
t = 1;
m = n;
hn = n >> 1;
for (u = logn; u > 1; u--)
{
int hm, dt, i1, j1;
hm = m >> 1;
dt = t << 1;
for (i1 = 0, j1 = 0; j1 < hn; i1++, j1 += dt)
{
int j, j2;
j2 = j1 + t;
FalconFPR s_re, s_im;
s_re = fpr.fpr_gm_tab[((hm + i1) << 1) + 0];
s_im = fpr.fpr_neg(fpr.fpr_gm_tab[((hm + i1) << 1) + 1]);
for (j = j1; j < j2; j++)
{
FalconFPR x_re, x_im, y_re, y_im;
ComplexNumberWrapper res;
x_re = srcf[f + j];
x_im = srcf[f + j + hn];
y_re = srcf[f + j + t];
y_im = srcf[f + j + t + hn];
res = FPC_ADD(x_re, x_im, y_re, y_im);
srcf[f + j] = res.re;
srcf[f + j + hn] = res.im;
res = FPC_SUB(x_re, x_im, y_re, y_im);
x_re = res.re;
x_im = res.im;
res = FPC_MUL(x_re, x_im, s_re, s_im);
srcf[f + j + t] = res.re;
srcf[f + j + t + hn] = res.im;
}
}
t = dt;
m = hm;
}
/*
* Last iteration is a no-op, provided that we divide by N/2
* instead of N. We need to make a special case for logn = 0.
*/
if (logn > 0)
{
FalconFPR ni;
ni = fpr.fpr_p2_tab[logn];
for (u = 0; u < n; u++)
{
srcf[f + u] = fpr.fpr_mul(srcf[f + u], ni);
}
}
}
/* see inner.h */
void poly_add(
FalconFPR[] srca, int a, FalconFPR[] srcb, int b, int logn)
{
int n, u;
n = 1 << logn;
for (u = 0; u < n; u++)
{
srca[a + u] = fpr.fpr_add(srca[a + u], srcb[b + u]);
}
}
/* see inner.h */
void poly_sub(
FalconFPR[] srca, int a, FalconFPR[] srcb, int b, int logn)
{
int n, u;
n = 1 << logn;
for (u = 0; u < n; u++)
{
srca[a + u] = fpr.fpr_sub(srca[a + u], srcb[b + u]);
}
}
/* see inner.h */
void poly_neg(FalconFPR[] srca, int a, int logn)
{
int n, u;
n = 1 << logn;
for (u = 0; u < n; u++)
{
srca[a + u] = fpr.fpr_neg(srca[a + u]);
}
}
/* see inner.h */
void poly_adj_fft(FalconFPR[] srca, int a, int logn)
{
int n, u;
n = 1 << logn;
for (u = (n >> 1); u < n; u++)
{
srca[a + u] = fpr.fpr_neg(srca[a + u]);
}
}
/* see inner.h */
void poly_mul_fft(
FalconFPR[] srca, int a, FalconFPR[] srcb, int b, int logn)
{
int n, hn, u;
n = 1 << logn;
hn = n >> 1;
for (u = 0; u < hn; u++)
{
FalconFPR a_re, a_im, b_re, b_im;
ComplexNumberWrapper res;
a_re = srca[a + u];
a_im = srca[a + u + hn];
b_re = srcb[b + u];
b_im = srcb[b + u + hn];
res = FPC_MUL(a_re, a_im, b_re, b_im);
srca[a + u] = res.re;
srca[a + u + hn] = res.im;
}
}
/* see inner.h */
void poly_muladj_fft(
FalconFPR[] srca, int a, FalconFPR[] srcb, int b, int logn)
{
int n, hn, u;
n = 1 << logn;
hn = n >> 1;
for (u = 0; u < hn; u++)
{
FalconFPR a_re, a_im, b_re, b_im;
ComplexNumberWrapper res;
a_re = srca[a + u];
a_im = srca[a + u + hn];
b_re = srcb[b + u];
b_im = fpr.fpr_neg(srcb[b + u + hn]);
res = FPC_MUL(a_re, a_im, b_re, b_im);
srca[a + u] = res.re;
srca[a + u + hn] = res.im;
}
}
/* see inner.h */
void poly_mulselfadj_fft(FalconFPR[] srca, int a, int logn)
{
/*
* Since each coefficient is multiplied with its own conjugate,
* the result contains only real values.
*/
int n, hn, u;
n = 1 << logn;
hn = n >> 1;
for (u = 0; u < hn; u++)
{
FalconFPR a_re, a_im;
ComplexNumberWrapper res;
a_re = srca[a + u];
a_im = srca[a + u + hn];
srca[a + u] = fpr.fpr_add(fpr.fpr_sqr(a_re), fpr.fpr_sqr(a_im));
srca[a + u + hn] = fpr.fpr_zero;
}
}
/* see inner.h */
void poly_mulconst(FalconFPR[] srca, int a, FalconFPR x, int logn)
{
int n, u;
n = 1 << logn;
for (u = 0; u < n; u++)
{
srca[a + u] = fpr.fpr_mul(srca[a + u], x);
}
}
/* see inner.h */
void poly_div_fft(
FalconFPR[] srca, int a, FalconFPR[] srcb, int b, int logn)
{
int n, hn, u;
n = 1 << logn;
hn = n >> 1;
for (u = 0; u < hn; u++)
{
FalconFPR a_re, a_im, b_re, b_im;
ComplexNumberWrapper res;
a_re = srca[a + u];
a_im = srca[a + u + hn];
b_re = srcb[b + u];
b_im = srcb[b + u + hn];
res = FPC_DIV(a_re, a_im, b_re, b_im);
srca[a + u] = res.re;
srca[a + u + hn] = res.im;
}
}
/* see inner.h */
void poly_invnorm2_fft(FalconFPR[] srcd, int d,
FalconFPR[] srca, int a, FalconFPR[] srcb, int b, int logn)
{
int n, hn, u;
n = 1 << logn;
hn = n >> 1;
for (u = 0; u < hn; u++)
{
FalconFPR a_re, a_im;
FalconFPR b_re, b_im;
a_re = srca[a + u];
a_im = srca[a + u + hn];
b_re = srcb[b + u];
b_im = srcb[b + u + hn];
srcd[d + u] = fpr.fpr_inv(fpr.fpr_add(
fpr.fpr_add(fpr.fpr_sqr(a_re), fpr.fpr_sqr(a_im)),
fpr.fpr_add(fpr.fpr_sqr(b_re), fpr.fpr_sqr(b_im))));
}
}
/* see inner.h */
void poly_add_muladj_fft(FalconFPR[] srcd, int d,
FalconFPR[] srcF, int F, FalconFPR[] srcG, int G,
FalconFPR[] srcf, int f, FalconFPR[] srcg, int g, int logn)
{
int n, hn, u;
n = 1 << logn;
hn = n >> 1;
for (u = 0; u < hn; u++)
{
FalconFPR F_re, F_im, G_re, G_im;
FalconFPR f_re, f_im, g_re, g_im;
FalconFPR a_re, a_im, b_re, b_im;
ComplexNumberWrapper res;
F_re = srcF[F + u];
F_im = srcF[F + u + hn];
G_re = srcG[G + u];
G_im = srcG[G + u + hn];
f_re = srcf[f + u];
f_im = srcf[f + u + hn];
g_re = srcg[g + u];
g_im = srcg[g + u + hn];
res = FPC_MUL(F_re, F_im, f_re, fpr.fpr_neg(f_im));
a_re = res.re;
a_im = res.im;
res = FPC_MUL(G_re, G_im, g_re, fpr.fpr_neg(g_im));
b_re = res.re;
b_im = res.im;
srcd[d + u] = fpr.fpr_add(a_re, b_re);
srcd[d + u + hn] = fpr.fpr_add(a_im, b_im);
}
}
/* see inner.h */
void poly_mul_autoadj_fft(
FalconFPR[] srca, int a, FalconFPR[] srcb, int b, int logn)
{
int n, hn, u;
n = 1 << logn;
hn = n >> 1;
for (u = 0; u < hn; u++)
{
srca[a + u] = fpr.fpr_mul(srca[a + u], srcb[b + u]);
srca[a + u + hn] = fpr.fpr_mul(srca[a + u + hn], srcb[b + u]);
}
}
/* see inner.h */
void poly_div_autoadj_fft(
FalconFPR[] srca, int a, FalconFPR[] srcb, int b, int logn)
{
int n, hn, u;
n = 1 << logn;
hn = n >> 1;
for (u = 0; u < hn; u++)
{
FalconFPR ib;
ib = fpr.fpr_inv(srcb[b + u]);
srca[a + u] = fpr.fpr_mul(srca[a + u], ib);
srca[a + u + hn] = fpr.fpr_mul(srca[a + u + hn], ib);
}
}
/* see inner.h */
void poly_LDL_fft(
FalconFPR[] srcg00, int g00,
FalconFPR[] srcg01, int g01, FalconFPR[] srcg11, int g11, int logn)
{
int n, hn, u;
n = 1 << logn;
hn = n >> 1;
for (u = 0; u < hn; u++)
{
FalconFPR g00_re, g00_im, g01_re, g01_im, g11_re, g11_im;
FalconFPR mu_re, mu_im;
ComplexNumberWrapper res;
g00_re = srcg00[g00 + u];
g00_im = srcg00[g00 + u + hn];
g01_re = srcg01[g01 + u];
g01_im = srcg01[g01 + u + hn];
g11_re = srcg11[g11 + u];
g11_im = srcg11[g11 + u + hn];
res = FPC_DIV(g01_re, g01_im, g00_re, g00_im);
mu_re = res.re;
mu_im = res.im;
res = FPC_MUL(mu_re, mu_im, g01_re, fpr.fpr_neg(g01_im));
g01_re = res.re;
g01_im = res.im;
res = FPC_SUB(g11_re, g11_im, g01_re, g01_im);
srcg11[g11 + u] = res.re;
srcg11[g11 + u + hn] = res.im;
srcg01[g01 + u] = mu_re;
srcg01[g01 + u + hn] = fpr.fpr_neg(mu_im);
}
}
/* see inner.h */
void poly_LDLmv_fft(
FalconFPR[] srcd11, int d11, FalconFPR[] srcl10, int l10,
FalconFPR[] srcg00, int g00, FalconFPR[] srcg01, int g01,
FalconFPR[] srcg11, int g11, int logn)
{
int n, hn, u;
n = 1 << logn;
hn = n >> 1;
for (u = 0; u < hn; u++)
{
FalconFPR g00_re, g00_im, g01_re, g01_im, g11_re, g11_im;
FalconFPR mu_re, mu_im;
ComplexNumberWrapper res;
g00_re = srcg00[g00 + u];
g00_im = srcg00[g00 + u + hn];
g01_re = srcg01[g01 + u];
g01_im = srcg01[g01 + u + hn];
g11_re = srcg11[g11 + u];
g11_im = srcg11[g11 + u + hn];
res = FPC_DIV(g01_re, g01_im, g00_re, g00_im);
mu_re = res.re;
mu_im = res.im;
res = FPC_MUL(mu_re, mu_im, g01_re, fpr.fpr_neg(g01_im));
g01_re = res.re;
g01_im = res.im;
res = FPC_SUB(g11_re, g11_im, g01_re, g01_im);
srcd11[d11 + u] = res.re;
srcd11[d11 + u + hn] = res.im;
srcl10[l10 + u] = mu_re;
srcl10[l10 + u + hn] = fpr.fpr_neg(mu_im);
}
}
/* see inner.h */
void poly_split_fft(
FalconFPR[] srcf0, int f0, FalconFPR[] srcf1, int f1,
FalconFPR[] srcf, int f, int logn)
{
/*
* The FFT representation we use is in bit-reversed order
* (element i contains f(w^(rev(i))), where rev() is the
* bit-reversal function over the ring degree. This changes
* indexes with regards to the Falcon specification.
*/
int n, hn, qn, u;
n = 1 << logn;
hn = n >> 1;
qn = hn >> 1;
/*
* We process complex values by pairs. For logn = 1, there is only
* one complex value (the other one is the implicit conjugate),
* so we add the two lines below because the loop will be
* skipped.
*/
srcf0[f0 + 0] = srcf[f + 0];
srcf1[f1 + 0] = srcf[f + hn];
for (u = 0; u < qn; u++)
{
FalconFPR a_re, a_im, b_re, b_im;
FalconFPR t_re, t_im;
ComplexNumberWrapper res;
a_re = srcf[f + (u << 1) + 0];
a_im = srcf[f + (u << 1) + 0 + hn];
b_re = srcf[f + (u << 1) + 1];
b_im = srcf[f + (u << 1) + 1 + hn];
res = FPC_ADD(a_re, a_im, b_re, b_im);
t_re = res.re;
t_im = res.im;
srcf0[f0 + u] = fpr.fpr_half(t_re);
srcf0[f0 + u + qn] = fpr.fpr_half(t_im);
res = FPC_SUB(a_re, a_im, b_re, b_im);
t_re = res.re;
t_im = res.im;
res = FPC_MUL(t_re, t_im,
fpr.fpr_gm_tab[((u + hn) << 1) + 0],
fpr.fpr_neg(fpr.fpr_gm_tab[((u + hn) << 1) + 1]));
t_re = res.re;
t_im = res.im;
srcf1[f1 + u] = fpr.fpr_half(t_re);
srcf1[f1 + u + qn] = fpr.fpr_half(t_im);
}
}
/* see inner.h */
void poly_merge_fft(
FalconFPR[] srcf, int f,
FalconFPR[] srcf0, int f0, FalconFPR[] srcf1, int f1, int logn)
{
int n, hn, qn, u;
n = 1 << logn;
hn = n >> 1;
qn = hn >> 1;
/*
* An extra copy to handle the special case logn = 1.
*/
srcf[f + 0] = srcf0[f0 + 0];
srcf[f + hn] = srcf1[f1 + 0];
for (u = 0; u < qn; u++)
{
FalconFPR a_re, a_im, b_re, b_im;
FalconFPR t_re, t_im;
ComplexNumberWrapper res;
a_re = srcf0[f0 + u];
a_im = srcf0[f0 + u + qn];
res = FPC_MUL(srcf1[f1 + u], srcf1[f1 + u + qn],
fpr.fpr_gm_tab[((u + hn) << 1) + 0],
fpr.fpr_gm_tab[((u + hn) << 1) + 1]);
b_re = res.re;
b_im = res.im;
res = FPC_ADD(a_re, a_im, b_re, b_im);
t_re = res.re;
t_im = res.im;
srcf[f + (u << 1) + 0] = t_re;
srcf[f + (u << 1) + 0 + hn] = t_im;
res = FPC_SUB(a_re, a_im, b_re, b_im);
t_re = res.re;
t_im = res.im;
srcf[f + (u << 1) + 1] = t_re;
srcf[f + (u << 1) + 1 + hn] = t_im;
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy