org.bouncycastle.pqc.legacy.crypto.sike.Isogeny Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of bcprov-debug-jdk15to18 Show documentation
Show all versions of bcprov-debug-jdk15to18 Show documentation
The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for JDK 1.5 to JDK 1.8.
package org.bouncycastle.pqc.legacy.crypto.sike;
class Isogeny
{
SIKEEngine engine;
Isogeny(SIKEEngine engine)
{
this.engine = engine;
}
// Doubling of a Montgomery point in projective coordinates (X:Z) over affine curve coefficient A.
// Input: projective Montgomery x-coordinates P = (X1:Z1), where x1=X1/Z1 and Montgomery curve constants (A+2)/4.
// Output: projective Montgomery x-coordinates Q = 2*P = (X2:Z2).
protected void Double(PointProj P, PointProj Q, long[][] A24, int k)
{
long[][] temp = new long[2][engine.params.NWORDS_FIELD],
a = new long[2][engine.params.NWORDS_FIELD],
b = new long[2][engine.params.NWORDS_FIELD],
c = new long[2][engine.params.NWORDS_FIELD],
aa = new long[2][engine.params.NWORDS_FIELD],
bb = new long[2][engine.params.NWORDS_FIELD];
engine.fpx.fp2copy(P.X, Q.X);
engine.fpx.fp2copy(P.Z, Q.Z);
for (int j = 0; j < k; j++)
{
engine.fpx.fp2add(Q.X, Q.Z, a);
engine.fpx.fp2sub(Q.X, Q.Z, b);
engine.fpx.fp2sqr_mont(a, aa);
engine.fpx.fp2sqr_mont(b, bb);
engine.fpx.fp2sub(aa, bb, c);
engine.fpx.fp2mul_mont(aa, bb, Q.X);
engine.fpx.fp2mul_mont(A24, c, temp);
engine.fpx.fp2add(temp, bb, temp);
engine.fpx.fp2mul_mont(c, temp, Q.Z);
}
}
protected void CompleteMPoint(long[][] A, PointProj P, PointProjFull R)
{ // Given an xz-only representation on a montgomery curve, compute its affine representation
long[][] zero = new long[2][engine.params.NWORDS_FIELD],
one = new long[2][engine.params.NWORDS_FIELD],
xz = new long[2][engine.params.NWORDS_FIELD],
yz = new long[2][engine.params.NWORDS_FIELD],
s2 = new long[2][engine.params.NWORDS_FIELD],
r2 = new long[2][engine.params.NWORDS_FIELD],
invz = new long[2][engine.params.NWORDS_FIELD],
temp0 = new long[2][engine.params.NWORDS_FIELD],
temp1 = new long[2][engine.params.NWORDS_FIELD];
engine.fpx.fpcopy(engine.params.Montgomery_one,0, one[0]);
if (!Fpx.subarrayEquals(P.Z[0], zero[0], engine.params.NWORDS_FIELD) || !Fpx.subarrayEquals(P.Z[1], zero[1], engine.params.NWORDS_FIELD))
{
engine.fpx.fp2mul_mont(P.X, P.Z, xz); // xz = x*z;
engine.fpx.fpsubPRIME(P.X[0], P.Z[1], temp0[0]);
engine.fpx.fpaddPRIME(P.X[1], P.Z[0], temp0[1]);
engine.fpx.fpaddPRIME(P.X[0], P.Z[1], temp1[0]);
engine.fpx.fpsubPRIME(P.X[1], P.Z[0], temp1[1]);
engine.fpx.fp2mul_mont(temp0, temp1, s2); // s2 = (x + i*z)*(x - i*z);
engine.fpx.fp2mul_mont(A, xz, temp0);
engine.fpx.fp2add(temp0, s2, temp1);
engine.fpx.fp2mul_mont(xz, temp1, r2); // r2 = xz*(A*xz + s2);
engine.fpx.sqrt_Fp2(r2, yz);
engine.fpx.fp2copy(P.Z, invz);
engine.fpx.fp2inv_mont_bingcd(invz);
engine.fpx.fp2mul_mont(P.X, invz, R.X);
engine.fpx.fp2sqr_mont(invz, temp0);
engine.fpx.fp2mul_mont(yz, temp0, R.Y); // R = EM![x*invz, yz*invz^2];
engine.fpx.fp2copy(one, R.Z);
}
else
{
engine.fpx.fp2copy(zero, R.X);
engine.fpx.fp2copy(one, R.Y);
engine.fpx.fp2copy(zero, R.Z); // R = EM!0;
}
}
void Ladder(PointProj P, long[] m, long[][] A, int order_bits, PointProj R)
{
PointProj R0 = new PointProj(engine.params.NWORDS_FIELD),
R1 = new PointProj(engine.params.NWORDS_FIELD);
long[][] A24 = new long[2][engine.params.NWORDS_FIELD];
int bit = 0;
long mask;
int j, swap, prevbit = 0;
engine.fpx.fpcopy(engine.params.Montgomery_one, 0, A24[0]);
engine.fpx.fpaddPRIME(A24[0], A24[0], A24[0]);
engine.fpx.fp2add(A, A24, A24);
engine.fpx.fp2div2(A24, A24);
engine.fpx.fp2div2(A24, A24); // A24 = (A+2)/4
j = order_bits - 1;
bit = (int) ((m[j >> Internal.LOG2RADIX] >>> (j & (Internal.RADIX-1))) & 1);
while (bit == 0)
{
j--;
bit = (int) ((m[j >> Internal.LOG2RADIX] >>> (j & (Internal.RADIX-1))) & 1);
}
// R0 <- P, R1 <- 2P
engine.fpx.fp2copy(P.X, R0.X);
engine.fpx.fp2copy(P.Z, R0.Z);
xDBL_e(P, R1, A24, 1);
// Main loop
for (int i = j - 1; i >= 0; i--)
{
bit = (int) ((m[i >> Internal.LOG2RADIX] >>> (i & (Internal.RADIX-1))) & 1);
swap = bit ^ prevbit;
prevbit = bit;
mask = 0 - swap;
swap_points(R0, R1, mask);
xDBLADD_proj(R0, R1, P.X, P.Z, A24);
}
swap = 0 ^ prevbit;
mask = 0 - swap;
swap_points(R0, R1, mask);
engine.fpx.fp2copy(R0.X, R.X);
engine.fpx.fp2copy(R0.Z, R.Z);
}
// Simultaneous doubling and differential addition.
// Input: projective Montgomery points P=(XP:ZP) and Q=(XQ:ZQ) such that xP=XP/ZP and xQ=XQ/ZQ, affine difference xPQ=x(P-Q) and Montgomery curve constant A24=(A+2)/4.
// Output: projective Montgomery points P <- 2*P = (X2P:Z2P) such that x(2P)=X2P/Z2P, and Q <- P+Q = (XQP:ZQP) such that = x(Q+P)=XQP/ZQP.
private void xDBLADD_proj(PointProj P, PointProj Q, long[][] XPQ, long[][] ZPQ, long[][] A24)
{
long[][] t0 = new long[2][engine.params.NWORDS_FIELD],
t1 = new long[2][engine.params.NWORDS_FIELD],
t2 = new long[2][engine.params.NWORDS_FIELD];
engine.fpx.fp2add(P.X, P.Z, t0); // t0 = XP+ZP
engine.fpx.fp2sub(P.X, P.Z, t1); // t1 = XP-ZP
engine.fpx.fp2sqr_mont(t0, P.X); // XP = (XP+ZP)^2
engine.fpx.fp2sub(Q.X, Q.Z, t2); // t2 = XQ-ZQ
engine.fpx.fp2correction(t2);
engine.fpx.fp2add(Q.X, Q.Z, Q.X); // XQ = XQ+ZQ
engine.fpx.fp2mul_mont(t0, t2, t0); // t0 = (XP+ZP)*(XQ-ZQ)
engine.fpx.fp2sqr_mont(t1, P.Z); // ZP = (XP-ZP)^2
engine.fpx.fp2mul_mont(t1, Q.X, t1); // t1 = (XP-ZP)*(XQ+ZQ)
engine.fpx.fp2sub(P.X, P.Z, t2); // t2 = (XP+ZP)^2-(XP-ZP)^2
engine.fpx.fp2mul_mont(P.X, P.Z, P.X); // XP = (XP+ZP)^2*(XP-ZP)^2
engine.fpx.fp2mul_mont(t2, A24, Q.X); // XQ = A24*[(XP+ZP)^2-(XP-ZP)^2]
engine.fpx.fp2sub(t0, t1, Q.Z); // ZQ = (XP+ZP)*(XQ-ZQ)-(XP-ZP)*(XQ+ZQ)
engine.fpx.fp2add(Q.X, P.Z, P.Z); // ZP = A24*[(XP+ZP)^2-(XP-ZP)^2]+(XP-ZP)^2
engine.fpx.fp2add(t0, t1, Q.X); // XQ = (XP+ZP)*(XQ-ZQ)+(XP-ZP)*(XQ+ZQ)
engine.fpx.fp2mul_mont(P.Z, t2, P.Z); // ZP = [A24*[(XP+ZP)^2-(XP-ZP)^2]+(XP-ZP)^2]*[(XP+ZP)^2-(XP-ZP)^2]
engine.fpx.fp2sqr_mont(Q.Z, Q.Z); // ZQ = [(XP+ZP)*(XQ-ZQ)-(XP-ZP)*(XQ+ZQ)]^2
engine.fpx.fp2sqr_mont(Q.X, Q.X); // XQ = [(XP+ZP)*(XQ-ZQ)+(XP-ZP)*(XQ+ZQ)]^2
engine.fpx.fp2mul_mont(Q.X, ZPQ, Q.X); // XQ = ZPQ*[(XP+ZP)*(XQ-ZQ)+(XP-ZP)*(XQ+ZQ)]^2
engine.fpx.fp2mul_mont(Q.Z, XPQ, Q.Z); // ZQ = XPQ*[(XP+ZP)*(XQ-ZQ)-(XP-ZP)*(XQ+ZQ)]^2
}
// Doubling of a Montgomery point in projective coordinates (X:Z) over affine curve coefficient A.
// Input: projective Montgomery x-coordinates P = (X1:Z1), where x1=X1/Z1 and Montgomery curve constants (A+2)/4.
// Output: projective Montgomery x-coordinates Q = 2*P = (X2:Z2).
private void xDBL_e(PointProj P, PointProj Q, long[][] A24, int e)
{
long[][] temp = new long[2][engine.params.NWORDS_FIELD],
a = new long[2][engine.params.NWORDS_FIELD],
b = new long[2][engine.params.NWORDS_FIELD],
c = new long[2][engine.params.NWORDS_FIELD],
aa = new long[2][engine.params.NWORDS_FIELD],
bb = new long[2][engine.params.NWORDS_FIELD];
engine.fpx.fp2copy(P.X,Q.X);
engine.fpx.fp2copy(P.Z,Q.Z);
for (int j = 0; j < e; j++)
{
engine.fpx.fp2add(Q.X, Q.Z, a); // a = xQ + zQ
engine.fpx.fp2sub(Q.X, Q.Z, b); // b = xQ - zQ
engine.fpx.fp2sqr_mont(a, aa); //aa = (xQ + zQ)^2
engine.fpx.fp2sqr_mont(b, bb); //bb = (xQ - zQ)^2
engine.fpx.fp2sub(aa, bb, c); // c = (xQ + zQ)^2 - (xQ - zQ)^2
engine.fpx.fp2mul_mont(aa, bb, Q.X); // xQ = (xQ + zQ)^2 * (xQ - zQ)^2
engine.fpx.fp2mul_mont(A24, c, temp); // temp = A24 * ((xQ + zQ)^2 - (xQ - zQ)^2)
engine.fpx.fp2add(temp, bb, temp); // temp = A24 * ((xQ + zQ)^2 - (xQ - zQ)^2) + (xQ - zQ)^2
engine.fpx.fp2mul_mont(c, temp, Q.Z); // temp = (A24 * ((xQ + zQ)^2 - (xQ - zQ)^2) + (xQ - zQ)^2) * ((xQ + zQ)^2 - (xQ - zQ)^2)
}
}
// Computes [3^e](X:Z) on Montgomery curve with projective constant via e repeated triplings. e triplings in E costs k*(5M + 6S + 9A)
// Input: projective Montgomery x-coordinates P = (X:Z), where x=X/Z, Montgomery curve constant A2 = A/2 and the number of triplings e.
// Output: projective Montgomery x-coordinates Q <- [3^e]P.
void xTPLe_fast(PointProj P, PointProj Q, long[][] A2, int e)
{
PointProj T = new PointProj(engine.params.NWORDS_FIELD);
engine.fpx.copy_words(P, T);
for (int j = 0; j < e; j++)
{
xTPL_fast(T, T, A2);
}
engine.fpx.copy_words(T, Q);
}
// Montgomery curve (E: y^2 = x^3 + A*x^2 + x) x-only tripling at a cost 5M + 6S + 9A = 27p + 61a.
// Input : projective Montgomery x-coordinates P = (X:Z), where x=X/Z and Montgomery curve constant A/2.
// Output: projective Montgomery x-coordinates Q = 3*P = (X3:Z3).
private void xTPL_fast(PointProj P, PointProj Q, long[][] A2)
{
long[][] t1 = new long[2][engine.params.NWORDS_FIELD],
t2 = new long[2][engine.params.NWORDS_FIELD],
t3 = new long[2][engine.params.NWORDS_FIELD],
t4 = new long[2][engine.params.NWORDS_FIELD];
engine.fpx.fp2sqr_mont(P.X, t1); // t1 = x^2
engine.fpx.fp2sqr_mont(P.Z, t2); // t2 = z^2
engine.fpx.fp2add(t1, t2, t3); // t3 = t1 + t2
engine.fpx.fp2add(P.X, P.Z, t4); // t4 = x + z
engine.fpx.fp2sqr_mont(t4, t4); // t4 = t4^2
engine.fpx.fp2sub(t4, t3, t4); // t4 = t4 - t3
engine.fpx.fp2mul_mont(A2, t4, t4); // t4 = t4*A2
engine.fpx.fp2add(t3, t4, t4); // t4 = t4 + t3
engine.fpx.fp2sub(t1, t2, t3); // t3 = t1 - t2
engine.fpx.fp2sqr_mont(t3, t3); // t3 = t3^2
engine.fpx.fp2mul_mont(t1, t4, t1); // t1 = t1*t4
engine.fpx.fp2shl(t1, 2, t1); // t1 = 4*t1
engine.fpx.fp2sub(t1, t3, t1); // t1 = t1 - t3
engine.fpx.fp2sqr_mont(t1, t1); // t1 = t1^2
engine.fpx.fp2mul_mont(t2, t4, t2); // t2 = t2*t4
engine.fpx.fp2shl(t2, 2, t2); // t2 = 4*t2
engine.fpx.fp2sub(t2, t3, t2); // t2 = t2 - t3
engine.fpx.fp2sqr_mont(t2, t2); // t2 = t2^2
engine.fpx.fp2mul_mont(P.X, t2, Q.X); // x = x*t2
engine.fpx.fp2mul_mont(P.Z, t1, Q.Z); // z = z*t1
}
protected void LADDER3PT(long[][] xP, long[][] xQ, long[][] xPQ, long[] m, int AliceOrBob, PointProj R, long[][] A)
{
PointProj R0 = new PointProj(engine.params.NWORDS_FIELD),
R2 = new PointProj(engine.params.NWORDS_FIELD);
long[][] A24 = new long[2][engine.params.NWORDS_FIELD];
long mask;
int i, nbits, bit, swap, prevbit = 0;
if (AliceOrBob == engine.params.ALICE)
{
nbits = engine.params.OALICE_BITS;
} else
{
nbits = engine.params.OBOB_BITS - 1;
}
// Initializing constant
engine.fpx.fpcopy(engine.params.Montgomery_one, 0, A24[0]);
engine.fpx.mp2_add(A24, A24, A24);
engine.fpx.mp2_add(A, A24, A24);
engine.fpx.fp2div2(A24, A24);
engine.fpx.fp2div2(A24, A24); // A24 = (A+2)/4
// Initializing points
engine.fpx.fp2copy(xQ, R0.X);
engine.fpx.fpcopy(engine.params.Montgomery_one, 0, R0.Z[0]);
engine.fpx.fp2copy(xPQ, R2.X);
engine.fpx.fpcopy(engine.params.Montgomery_one, 0, R2.Z[0]);
engine.fpx.fp2copy(xP, R.X);
engine.fpx.fpcopy(engine.params.Montgomery_one, 0, R.Z[0]);
engine.fpx.fpzero((R.Z)[1]);
// Main loop
for (i = 0; i < nbits; i++)
{
bit = (int) ((m[i >>> Internal.LOG2RADIX] >>> (i & (Internal.RADIX-1))) & 1);
swap = bit ^ prevbit;
prevbit = bit;
mask = 0 - (long) swap;
swap_points(R, R2, mask);
xDBLADD(R0, R2, R.X, A24);
engine.fpx.fp2mul_mont(R2.X, R.Z, R2.X);
}
swap = 0 ^ prevbit;
mask = 0 - (long)swap;
swap_points(R, R2, mask);
}
// Complete point on A = 0 curve
protected void CompletePoint(PointProj P, PointProjFull R)
{
long[][] xz = new long[2][engine.params.NWORDS_FIELD],
s2 = new long[2][engine.params.NWORDS_FIELD],
r2 = new long[2][engine.params.NWORDS_FIELD],
yz = new long[2][engine.params.NWORDS_FIELD],
invz = new long[2][engine.params.NWORDS_FIELD],
t0 = new long[2][engine.params.NWORDS_FIELD],
t1 = new long[2][engine.params.NWORDS_FIELD],
one = new long[2][engine.params.NWORDS_FIELD];
engine.fpx.fpcopy(engine.params.Montgomery_one, 0, one[0]);
engine.fpx.fp2mul_mont(P.X, P.Z, xz);
engine.fpx.fpsubPRIME(P.X[0], P.Z[1], t0[0]);
engine.fpx.fpaddPRIME(P.X[1], P.Z[0], t0[1]);
engine.fpx.fpaddPRIME(P.X[0], P.Z[1], t1[0]);
engine.fpx.fpsubPRIME(P.X[1], P.Z[0], t1[1]);
engine.fpx.fp2mul_mont(t0, t1, s2);
engine.fpx.fp2mul_mont(xz, s2, r2);
engine.fpx.sqrt_Fp2(r2, yz);
engine.fpx.fp2copy(P.Z,invz);
engine.fpx.fp2inv_mont_bingcd(invz);
engine.fpx.fp2mul_mont(P.X, invz, R.X);
engine.fpx.fp2sqr_mont(invz, t0);
engine.fpx.fp2mul_mont(yz, t0, R.Y);
engine.fpx.fp2copy(one, R.Z);
}
// Swap points.
// If option = 0 then P <- P and Q <- Q, else if option = 0xFF...FF then P <- Q and Q <- P
protected void swap_points(PointProj P, PointProj Q, long option)
{
long temp;
int i;
for (i = 0; i < engine.params.NWORDS_FIELD; i++)
{
temp = option & (P.X[0][i] ^ Q.X[0][i]);
P.X[0][i] = temp ^ P.X[0][i];
Q.X[0][i] = temp ^ Q.X[0][i];
temp = option & (P.X[1][i] ^ Q.X[1][i]);
P.X[1][i] = temp ^ P.X[1][i];
Q.X[1][i] = temp ^ Q.X[1][i];
temp = option & (P.Z[0][i] ^ Q.Z[0][i]);
P.Z[0][i] = temp ^ P.Z[0][i];
Q.Z[0][i] = temp ^ Q.Z[0][i];
temp = option & (P.Z[1][i] ^ Q.Z[1][i]);
P.Z[1][i] = temp ^ P.Z[1][i];
Q.Z[1][i] = temp ^ Q.Z[1][i];
}
}
// Simultaneous doubling and differential addition.
// Input: projective Montgomery points P=(XP:ZP) and Q=(XQ:ZQ) such that xP=XP/ZP and xQ=XQ/ZQ, affine difference xPQ=x(P-Q) and Montgomery curve constant A24=(A+2)/4.
// Output: projective Montgomery points P <- 2*P = (X2P:Z2P) such that x(2P)=X2P/Z2P, and Q <- P+Q = (XQP:ZQP) such that = x(Q+P)=XQP/ZQP.
protected void xDBLADD(PointProj P, PointProj Q, long[][] xPQ, long[][] A24)
{
long[][] t0 = new long[2][engine.params.NWORDS_FIELD],
t1 = new long[2][engine.params.NWORDS_FIELD],
t2 = new long[2][engine.params.NWORDS_FIELD];
engine.fpx.mp2_add(P.X, P.Z, t0); // t0 = XP+ZP
engine.fpx.mp2_sub_p2(P.X, P.Z, t1); // t1 = XP-ZP
engine.fpx.fp2sqr_mont(t0, P.X); // XP = (XP+ZP)^2
engine.fpx.mp2_sub_p2(Q.X, Q.Z, t2); // t2 = XQ-ZQ
engine.fpx.mp2_add(Q.X, Q.Z, Q.X); // XQ = XQ+ZQ
engine.fpx.fp2mul_mont(t0, t2, t0); // t0 = (XP+ZP)*(XQ-ZQ)
engine.fpx.fp2sqr_mont(t1, P.Z); // ZP = (XP-ZP)^2
engine.fpx.fp2mul_mont(t1, Q.X, t1); // t1 = (XP-ZP)*(XQ+ZQ)
engine.fpx.mp2_sub_p2(P.X, P.Z, t2); // t2 = (XP+ZP)^2-(XP-ZP)^2
engine.fpx.fp2mul_mont(P.X, P.Z, P.X); // XP = (XP+ZP)^2*(XP-ZP)^2
engine.fpx.fp2mul_mont(A24, t2, Q.X); // XQ = A24*[(XP+ZP)^2-(XP-ZP)^2]
engine.fpx.mp2_sub_p2(t0, t1, Q.Z); // ZQ = (XP+ZP)*(XQ-ZQ)-(XP-ZP)*(XQ+ZQ)
engine.fpx.mp2_add(Q.X, P.Z, P.Z); // ZP = A24*[(XP+ZP)^2-(XP-ZP)^2]+(XP-ZP)^2
engine.fpx.mp2_add(t0, t1, Q.X); // XQ = (XP+ZP)*(XQ-ZQ)+(XP-ZP)*(XQ+ZQ)
engine.fpx.fp2mul_mont(P.Z, t2, P.Z); // ZP = [A24*[(XP+ZP)^2-(XP-ZP)^2]+(XP-ZP)^2]*[(XP+ZP)^2-(XP-ZP)^2]
engine.fpx.fp2sqr_mont(Q.Z, Q.Z); // ZQ = [(XP+ZP)*(XQ-ZQ)-(XP-ZP)*(XQ+ZQ)]^2
engine.fpx.fp2sqr_mont(Q.X, Q.X); // XQ = [(XP+ZP)*(XQ-ZQ)+(XP-ZP)*(XQ+ZQ)]^2
engine.fpx.fp2mul_mont(Q.Z, xPQ, Q.Z); // ZQ = xPQ*[(XP+ZP)*(XQ-ZQ)-(XP-ZP)*(XQ+ZQ)]^2
}
// Computes [2^e](X:Z) on Montgomery curve with projective constant via e repeated doublings.
// Input: projective Montgomery x-coordinates P = (XP:ZP), such that xP=XP/ZP and Montgomery curve constants A+2C and 4C.
// Output: projective Montgomery x-coordinates Q <- (2^e)*P.
protected void xDBLe(PointProj P, PointProj Q, long[][] A24plus, long[][] C24, int e)
{
int i;
engine.fpx.copy_words(P, Q);
for (i = 0; i < e; i++)
{
xDBL(Q, Q, A24plus, C24);
}
}
// Doubling of a Montgomery point in projective coordinates (X:Z).
// Input: projective Montgomery x-coordinates P = (X1:Z1), where x1=X1/Z1 and Montgomery curve constants A+2C and 4C.
// Output: projective Montgomery x-coordinates Q = 2*P = (X2:Z2).
protected void xDBL(PointProj P, PointProj Q, long[][] A24plus, long[][] C24)
{
long[][] t0 = new long[2][engine.params.NWORDS_FIELD],
t1 = new long[2][engine.params.NWORDS_FIELD];
engine.fpx.mp2_sub_p2(P.X, P.Z, t0); // t0 = X1-Z1
engine.fpx.mp2_add(P.X, P.Z, t1); // t1 = X1+Z1
engine.fpx.fp2sqr_mont(t0, t0); // t0 = (X1-Z1)^2
engine.fpx.fp2sqr_mont(t1, t1); // t1 = (X1+Z1)^2
engine.fpx.fp2mul_mont(C24, t0, Q.Z); // Z2 = C24*(X1-Z1)^2
engine.fpx.fp2mul_mont(t1, Q.Z, Q.X); // X2 = C24*(X1-Z1)^2*(X1+Z1)^2
engine.fpx.mp2_sub_p2(t1, t0, t1); // t1 = (X1+Z1)^2-(X1-Z1)^2
engine.fpx.fp2mul_mont(A24plus, t1, t0); // t0 = A24plus*[(X1+Z1)^2-(X1-Z1)^2]
engine.fpx.mp2_add(Q.Z, t0, Q.Z); // Z2 = A24plus*[(X1+Z1)^2-(X1-Z1)^2] + C24*(X1-Z1)^2
engine.fpx.fp2mul_mont(Q.Z, t1, Q.Z); // Z2 = [A24plus*[(X1+Z1)^2-(X1-Z1)^2] + C24*(X1-Z1)^2]*[(X1+Z1)^2-(X1-Z1)^2]
}
// Tripling of a Montgomery point in projective coordinates (X:Z).
// Input: projective Montgomery x-coordinates P = (X:Z), where x=X/Z and Montgomery curve constants A24plus = A+2C and A24minus = A-2C.
// Output: projective Montgomery x-coordinates Q = 3*P = (X3:Z3).
private void xTPL(PointProj P, PointProj Q, long[][] A24minus, long[][] A24plus)
{
long[][] t0 = new long[2][engine.params.NWORDS_FIELD],
t1 = new long[2][engine.params.NWORDS_FIELD],
t2 = new long[2][engine.params.NWORDS_FIELD],
t3 = new long[2][engine.params.NWORDS_FIELD],
t4 = new long[2][engine.params.NWORDS_FIELD],
t5 = new long[2][engine.params.NWORDS_FIELD],
t6 = new long[2][engine.params.NWORDS_FIELD];
engine.fpx.mp2_sub_p2(P.X, P.Z, t0); // t0 = X-Z
engine.fpx.fp2sqr_mont(t0, t2); // t2 = (X-Z)^2
engine.fpx.mp2_add(P.X, P.Z, t1); // t1 = X+Z
engine.fpx.fp2sqr_mont(t1, t3); // t3 = (X+Z)^2
engine.fpx.mp2_add(P.X, P.X, t4); // t4 = 2*X
engine.fpx.mp2_add(P.Z, P.Z, t0); // t0 = 2*Z
engine.fpx.fp2sqr_mont(t4, t1); // t1 = 4*X^2
engine.fpx.mp2_sub_p2(t1, t3, t1); // t1 = 4*X^2 - (X+Z)^2
engine.fpx.mp2_sub_p2(t1, t2, t1); // t1 = 4*X^2 - (X+Z)^2 - (X-Z)^2
engine.fpx.fp2mul_mont(A24plus, t3, t5); // t5 = A24plus*(X+Z)^2
engine.fpx.fp2mul_mont(t3, t5, t3); // t3 = A24plus*(X+Z)^4
engine.fpx.fp2mul_mont(A24minus, t2, t6); // t6 = A24minus*(X-Z)^2
engine.fpx.fp2mul_mont(t2, t6, t2); // t2 = A24minus*(X-Z)^4
engine.fpx.mp2_sub_p2(t2, t3, t3); // t3 = A24minus*(X-Z)^4 - A24plus*(X+Z)^4
engine.fpx.mp2_sub_p2(t5, t6, t2); // t2 = A24plus*(X+Z)^2 - A24minus*(X-Z)^2
engine.fpx.fp2mul_mont(t1, t2, t1); // t1 = [4*X^2 - (X+Z)^2 - (X-Z)^2]*[A24plus*(X+Z)^2 - A24minus*(X-Z)^2]
engine.fpx.fp2add(t3, t1, t2); // t2 = [4*X^2 - (X+Z)^2 - (X-Z)^2]*[A24plus*(X+Z)^2 - A24minus*(X-Z)^2] + A24minus*(X-Z)^4 - A24plus*(X+Z)^4
engine.fpx.fp2sqr_mont(t2, t2); // t2 = t2^2
engine.fpx.fp2mul_mont(t4, t2, Q.X); // X3 = 2*X*t2
engine.fpx.fp2sub(t3, t1, t1); // t1 = A24minus*(X-Z)^4 - A24plus*(X+Z)^4 - [4*X^2 - (X+Z)^2 - (X-Z)^2]*[A24plus*(X+Z)^2 - A24minus*(X-Z)^2]
engine.fpx.fp2sqr_mont(t1, t1); // t1 = t1^2
engine.fpx.fp2mul_mont(t0, t1, Q.Z); // Z3 = 2*Z*t1
}
// Computes [3^e](X:Z) on Montgomery curve with projective constant via e repeated triplings.
// Input: projective Montgomery x-coordinates P = (XP:ZP), such that xP=XP/ZP and Montgomery curve constants A24plus = A+2C and A24minus = A-2C.
// Output: projective Montgomery x-coordinates Q <- (3^e)*P.
protected void xTPLe(PointProj P, PointProj Q, long[][] A24minus, long[][] A24plus, int e)
{
int i;
engine.fpx.copy_words(P, Q);
for (i = 0; i < e; i++)
{
xTPL(Q, Q, A24minus, A24plus);
}
}
// Given the x-coordinates of P, Q, and R, returns the value A corresponding to the Montgomery curve E_A: y^2=x^3+A*x^2+x such that R=Q-P on E_A.
// Input: the x-coordinates xP, xQ, and xR of the points P, Q and R.
// Output: the coefficient A corresponding to the curve E_A: y^2=x^3+A*x^2+x.
protected void get_A(long[][] xP, long[][] xQ, long[][] xR, long[][] A)
{
long[][] t0 = new long[2][engine.params.NWORDS_FIELD],
t1 = new long[2][engine.params.NWORDS_FIELD],
one = new long[2][engine.params.NWORDS_FIELD];
engine.fpx.fpcopy(engine.params.Montgomery_one, 0, one[0]);
engine.fpx.fp2add(xP, xQ, t1); // t1 = xP+xQ
engine.fpx.fp2mul_mont(xP, xQ, t0); // t0 = xP*xQ
engine.fpx.fp2mul_mont(xR, t1, A); // A = xR*t1
engine.fpx.fp2add(t0, A, A); // A = A+t0
engine.fpx.fp2mul_mont(t0, xR, t0); // t0 = t0*xR
engine.fpx.fp2sub(A, one, A); // A = A-1
engine.fpx.fp2add(t0, t0, t0); // t0 = t0+t0
engine.fpx.fp2add(t1, xR, t1); // t1 = t1+xR
engine.fpx.fp2add(t0, t0, t0); // t0 = t0+t0
engine.fpx.fp2sqr_mont(A, A); // A = A^2
engine.fpx.fp2inv_mont(t0); // t0 = 1/t0
engine.fpx.fp2mul_mont(A, t0, A); // A = A*t0
engine.fpx.fp2sub(A, t1, A); // Afinal = A-t1
}
// Computes the j-invariant of a Montgomery curve with projective constant.
// Input: A,C in GF(p^2).
// Output: j=256*(A^2-3*C^2)^3/(C^4*(A^2-4*C^2)), which is the j-invariant of the Montgomery curve B*y^2=x^3+(A/C)*x^2+x or (equivalently) j-invariant of B'*y^2=C*x^3+A*x^2+C*x.
protected void j_inv(long[][] A, long[][] C, long[][] jinv)
{
long[][] t0 = new long[2][engine.params.NWORDS_FIELD],
t1 = new long[2][engine.params.NWORDS_FIELD];
engine.fpx.fp2sqr_mont(A, jinv); // jinv = A^2
engine.fpx.fp2sqr_mont(C, t1); // t1 = C^2
engine.fpx.fp2add(t1, t1, t0); // t0 = t1+t1
engine.fpx.fp2sub(jinv, t0, t0); // t0 = jinv-t0
engine.fpx.fp2sub(t0, t1, t0); // t0 = t0-t1
engine.fpx.fp2sub(t0, t1, jinv); // jinv = t0-t1
engine.fpx.fp2sqr_mont(t1, t1); // t1 = t1^2
engine.fpx.fp2mul_mont(jinv, t1, jinv); // jinv = jinv*t1
engine.fpx.fp2add(t0, t0, t0); // t0 = t0+t0
engine.fpx.fp2add(t0, t0, t0); // t0 = t0+t0
engine.fpx.fp2sqr_mont(t0, t1); // t1 = t0^2
engine.fpx.fp2mul_mont(t0, t1, t0); // t0 = t0*t1
engine.fpx.fp2add(t0, t0, t0); // t0 = t0+t0
engine.fpx.fp2add(t0, t0, t0); // t0 = t0+t0
engine.fpx.fp2inv_mont(jinv); // jinv = 1/jinv
engine.fpx.fp2mul_mont(jinv, t0, jinv); // jinv = t0*jinv
}
// Computes the corresponding 3-isogeny of a projective Montgomery point (X3:Z3) of order 3.
// Input: projective point of order three P = (X3:Z3).
// Output: the 3-isogenous Montgomery curve with projective coefficient A/C.
protected void get_3_isog(PointProj P, long[][] A24minus, long[][] A24plus, long[][][] coeff)
{
long[][] t0 = new long[2][engine.params.NWORDS_FIELD],
t1 = new long[2][engine.params.NWORDS_FIELD],
t2 = new long[2][engine.params.NWORDS_FIELD],
t3 = new long[2][engine.params.NWORDS_FIELD],
t4 = new long[2][engine.params.NWORDS_FIELD];
engine.fpx.mp2_sub_p2(P.X, P.Z, coeff[0]); // coeff0 = X-Z
engine.fpx.fp2sqr_mont(coeff[0], t0); // t0 = (X-Z)^2
engine.fpx.mp2_add(P.X, P.Z, coeff[1]); // coeff1 = X+Z
engine.fpx.fp2sqr_mont(coeff[1], t1); // t1 = (X+Z)^2
engine.fpx.mp2_add(P.X, P.X, t3); // t3 = 2*X
engine.fpx.fp2sqr_mont(t3, t3); // t3 = 4*X^2
engine.fpx.fp2sub(t3, t0, t2); // t2 = 4*X^2 - (X-Z)^2
engine.fpx.fp2sub(t3, t1, t3); // t3 = 4*X^2 - (X+Z)^2
engine.fpx.mp2_add(t0, t3, t4); // t4 = 4*X^2 - (X+Z)^2 + (X-Z)^2
engine.fpx.mp2_add(t4, t4, t4); // t4 = 2(4*X^2 - (X+Z)^2 + (X-Z)^2)
engine.fpx.mp2_add(t1, t4, t4); // t4 = 8*X^2 - (X+Z)^2 + 2*(X-Z)^2
engine.fpx.fp2mul_mont(t2, t4, A24minus); // A24minus = [4*X^2 - (X-Z)^2]*[8*X^2 - (X+Z)^2 + 2*(X-Z)^2]
engine.fpx.mp2_add(t1, t2, t4); // t4 = 4*X^2 + (X+Z)^2 - (X-Z)^2
engine.fpx.mp2_add(t4, t4, t4); // t4 = 2(4*X^2 + (X+Z)^2 - (X-Z)^2)
engine.fpx.mp2_add(t0, t4, t4); // t4 = 8*X^2 + 2*(X+Z)^2 - (X-Z)^2
engine.fpx.fp2mul_mont(t3, t4, A24plus); // A24plus = [4*X^2 - (X+Z)^2]*[8*X^2 + 2*(X+Z)^2 - (X-Z)^2]
}
// Computes the 3-isogeny R=phi(X:Z), given projective point (X3:Z3) of order 3 on a Montgomery curve and
// a point P with 2 coefficients in coeff (computed in the function get_3_isog()).
// Inputs: projective points P = (X3:Z3) and Q = (X:Z).
// Output: the projective point Q <- phi(Q) = (X3:Z3).
protected void eval_3_isog(PointProj Q, long[][][] coeff)
{
long[][] t0 = new long[2][engine.params.NWORDS_FIELD],
t1 = new long[2][engine.params.NWORDS_FIELD],
t2 = new long[2][engine.params.NWORDS_FIELD];
engine.fpx.mp2_add(Q.X, Q.Z, t0); // t0 = X+Z
engine.fpx.mp2_sub_p2(Q.X, Q.Z, t1); // t1 = X-Z
engine.fpx.fp2mul_mont(coeff[0], t0, t0); // t0 = coeff0*(X+Z)
engine.fpx.fp2mul_mont(coeff[1], t1, t1); // t1 = coeff1*(X-Z)
engine.fpx.mp2_add(t0, t1, t2); // t2 = coeff0*(X+Z) + coeff1*(X-Z)
engine.fpx.mp2_sub_p2(t1, t0, t0); // t0 = coeff1*(X-Z) - coeff0*(X+Z)
engine.fpx.fp2sqr_mont(t2, t2); // t2 = [coeff0*(X+Z) + coeff1*(X-Z)]^2
engine.fpx.fp2sqr_mont(t0, t0); // t0 = [coeff1*(X-Z) - coeff0*(X+Z)]^2
engine.fpx.fp2mul_mont(Q.X, t2, Q.X); // X3final = X*[coeff0*(X+Z) + coeff1*(X-Z)]^2
engine.fpx.fp2mul_mont(Q.Z, t0, Q.Z); // Z3final = Z*[coeff1*(X-Z) - coeff0*(X+Z)]^2
}
// 3-way simultaneous inversion
// Input: z1,z2,z3
// Output: 1/z1,1/z2,1/z3 (override inputs).
protected void inv_3_way(long[][] z1, long[][] z2, long[][] z3)
{
long[][] t0 = new long[2][engine.params.NWORDS_FIELD],
t1 = new long[2][engine.params.NWORDS_FIELD],
t2 = new long[2][engine.params.NWORDS_FIELD],
t3 = new long[2][engine.params.NWORDS_FIELD];
engine.fpx.fp2mul_mont(z1, z2, t0); // t0 = z1*z2
engine.fpx.fp2mul_mont(z3, t0, t1); // t1 = z1*z2*z3
engine.fpx.fp2inv_mont(t1); // t1 = 1/(z1*z2*z3)
engine.fpx.fp2mul_mont(z3, t1, t2); // t2 = 1/(z1*z2)
engine.fpx.fp2mul_mont(t2, z2, t3); // t3 = 1/z1
engine.fpx.fp2mul_mont(t2, z1, z2); // z2 = 1/z2
engine.fpx.fp2mul_mont(t0, t1, z3); // z3 = 1/z3
engine.fpx.fp2copy(t3, z1); // z1 = 1/z1
}
// Computes the corresponding 2-isogeny of a projective Montgomery point (X2:Z2) of order 2.
// Input: projective point of order two P = (X2:Z2).
// Output: the 2-isogenous Montgomery curve with projective coefficients A/C.
protected void get_2_isog(PointProj P, long[][] A, long[][] C)
{
engine.fpx.fp2sqr_mont(P.X, A); // A = X2^2
engine.fpx.fp2sqr_mont(P.Z, C); // C = Z2^2
engine.fpx.mp2_sub_p2(C, A, A); // A = Z2^2 - X2^2
}
// Evaluates the isogeny at the point (X:Z) in the domain of the isogeny, given a 2-isogeny phi.
// Inputs: the projective point P = (X:Z) and the 2-isogeny kernel projetive point Q = (X2:Z2).
// Output: the projective point P = phi(P) = (X:Z) in the codomain.
protected void eval_2_isog(PointProj P, PointProj Q)
{
long[][] t0 = new long[2][engine.params.NWORDS_FIELD],
t1 = new long[2][engine.params.NWORDS_FIELD],
t2 = new long[2][engine.params.NWORDS_FIELD],
t3 = new long[2][engine.params.NWORDS_FIELD];
engine.fpx.mp2_add(Q.X, Q.Z, t0); // t0 = X2+Z2
engine.fpx.mp2_sub_p2(Q.X, Q.Z, t1); // t1 = X2-Z2
engine.fpx.mp2_add(P.X, P.Z, t2); // t2 = X+Z
engine.fpx.mp2_sub_p2(P.X, P.Z, t3); // t3 = X-Z
engine.fpx.fp2mul_mont(t0, t3, t0); // t0 = (X2+Z2)*(X-Z)
engine.fpx.fp2mul_mont(t1, t2, t1); // t1 = (X2-Z2)*(X+Z)
engine.fpx.mp2_add(t0, t1, t2); // t2 = (X2+Z2)*(X-Z) + (X2-Z2)*(X+Z)
engine.fpx.mp2_sub_p2(t0, t1, t3); // t3 = (X2+Z2)*(X-Z) - (X2-Z2)*(X+Z)
engine.fpx.fp2mul_mont(P.X, t2, P.X); // Xfinal
engine.fpx.fp2mul_mont(P.Z, t3, P.Z); // Zfinal
}
// Computes the corresponding 4-isogeny of a projective Montgomery point (X4:Z4) of order 4.
// Input: projective point of order four P = (X4:Z4).
// Output: the 4-isogenous Montgomery curve with projective coefficients A+2C/4C and the 3 coefficients
// that are used to evaluate the isogeny at a point in eval_4_isog().
protected void get_4_isog(PointProj P, long[][] A24plus, long[][] C24, long[][][] coeff)
{
engine.fpx.mp2_sub_p2(P.X, P.Z, coeff[1]); // coeff[1] = X4-Z4
engine.fpx.mp2_add(P.X, P.Z, coeff[2]); // coeff[2] = X4+Z4
engine.fpx.fp2sqr_mont(P.Z, coeff[0]); // coeff[0] = Z4^2
engine.fpx.mp2_add(coeff[0], coeff[0], coeff[0]); // coeff[0] = 2*Z4^2
engine.fpx.fp2sqr_mont(coeff[0], C24); // C24 = 4*Z4^4
engine.fpx.mp2_add(coeff[0], coeff[0], coeff[0]); // coeff[0] = 4*Z4^2
engine.fpx.fp2sqr_mont(P.X, A24plus); // A24plus = X4^2
engine.fpx.mp2_add(A24plus, A24plus, A24plus); // A24plus = 2*X4^2
engine.fpx.fp2sqr_mont(A24plus, A24plus); // A24plus = 4*X4^4
}
// Evaluates the isogeny at the point (X:Z) in the domain of the isogeny, given a 4-isogeny phi defined
// by the 3 coefficients in coeff (computed in the function get_4_isog()).
// Inputs: the coefficients defining the isogeny, and the projective point P = (X:Z).
// Output: the projective point P = phi(P) = (X:Z) in the codomain.
protected void eval_4_isog(PointProj P, long[][][] coeff)
{
long[][] t0 = new long[2][engine.params.NWORDS_FIELD],
t1 = new long[2][engine.params.NWORDS_FIELD];
engine.fpx.mp2_add(P.X, P.Z, t0); // t0 = X+Z
engine.fpx.mp2_sub_p2(P.X, P.Z, t1); // t1 = X-Z
engine.fpx.fp2mul_mont(t0, coeff[1], P.X); // X = (X+Z)*coeff[1]
engine.fpx.fp2mul_mont(t1, coeff[2], P.Z); // Z = (X-Z)*coeff[2]
engine.fpx.fp2mul_mont(t0, t1, t0); // t0 = (X+Z)*(X-Z)
engine.fpx.fp2mul_mont(coeff[0], t0, t0); // t0 = coeff[0]*(X+Z)*(X-Z)
engine.fpx.mp2_add(P.X, P.Z, t1); // t1 = (X-Z)*coeff[2] + (X+Z)*coeff[1]
engine.fpx.mp2_sub_p2(P.X, P.Z, P.Z); // Z = (X-Z)*coeff[2] - (X+Z)*coeff[1]
engine.fpx.fp2sqr_mont(t1, t1); // t1 = [(X-Z)*coeff[2] + (X+Z)*coeff[1]]^2
engine.fpx.fp2sqr_mont(P.Z, P.Z); // Z = [(X-Z)*coeff[2] - (X+Z)*coeff[1]]^2
engine.fpx.mp2_add(t1, t0, P.X); // X = coeff[0]*(X+Z)*(X-Z) + [(X-Z)*coeff[2] + (X+Z)*coeff[1]]^2
engine.fpx.mp2_sub_p2(P.Z, t0, t0); // t0 = [(X-Z)*coeff[2] - (X+Z)*coeff[1]]^2 - coeff[0]*(X+Z)*(X-Z)
engine.fpx.fp2mul_mont(P.X, t1, P.X); // Xfinal
engine.fpx.fp2mul_mont(P.Z, t0, P.Z); // Zfinal
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy