org.bouncycastle.pqc.math.ntru.HPSPolynomial Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of bcprov-debug-jdk15to18 Show documentation
Show all versions of bcprov-debug-jdk15to18 Show documentation
The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for JDK 1.5 to JDK 1.8.
package org.bouncycastle.pqc.math.ntru;
import org.bouncycastle.pqc.math.ntru.parameters.NTRUHPSParameterSet;
public class HPSPolynomial
extends Polynomial
{
public HPSPolynomial(NTRUHPSParameterSet params)
{
super(params);
}
@Override
public byte[] sqToBytes(int len)
{
byte[] r = new byte[len];
int i, j;
short[] t = new short[8];
for (i = 0; i < params.packDegree() / 8; i++)
{
for (j = 0; j < 8; j++)
{
t[j] = (short)modQ(this.coeffs[8 * i + j] & 0xffff, params.q());
}
r[11 * i + 0] = (byte)(t[0] & 0xff);
r[11 * i + 1] = (byte)((t[0] >>> 8) | ((t[1] & 0x1f) << 3));
r[11 * i + 2] = (byte)((t[1] >>> 5) | ((t[2] & 0x03) << 6));
r[11 * i + 3] = (byte)((t[2] >>> 2) & 0xff);
r[11 * i + 4] = (byte)((t[2] >>> 10) | ((t[3] & 0x7f) << 1));
r[11 * i + 5] = (byte)((t[3] >>> 7) | ((t[4] & 0x0f) << 4));
r[11 * i + 6] = (byte)((t[4] >>> 4) | ((t[5] & 0x01) << 7));
r[11 * i + 7] = (byte)((t[5] >>> 1) & 0xff);
r[11 * i + 8] = (byte)((t[5] >>> 9) | ((t[6] & 0x3f) << 2));
r[11 * i + 9] = (byte)((t[6] >>> 6) | ((t[7] & 0x07) << 5));
r[11 * i + 10] = (byte)(t[7] >>> 3);
}
for (j = 0; j < params.packDegree() - 8 * i; j++)
{
t[j] = (short)modQ(this.coeffs[8 * i + j] & 0xffff, params.q());
}
for (; j < 8; j++)
{
t[j] = 0;
}
switch (params.packDegree() & 0x07)
{
case 4:
{
r[11 * i + 0] = (byte)(t[0] & 0xff);
r[11 * i + 1] = (byte)((t[0] >>> 8) | ((t[1] & 0x1f) << 3));
r[11 * i + 2] = (byte)((t[1] >>> 5) | ((t[2] & 0x03) << 6));
r[11 * i + 3] = (byte)((t[2] >>> 2) & 0xff);
r[11 * i + 4] = (byte)((t[2] >>> 10) | ((t[3] & 0x7f) << 1));
r[11 * i + 5] = (byte)((t[3] >>> 7) | ((t[4] & 0x0f) << 4));
break;
}
case 2:
{
r[11 * i + 0] = (byte)(t[0] & 0xff);
r[11 * i + 1] = (byte)((t[0] >>> 8) | ((t[1] & 0x1f) << 3));
r[11 * i + 2] = (byte)((t[1] >>> 5) | ((t[2] & 0x03) << 6));
break;
}
}
return r;
}
@Override
public void sqFromBytes(byte[] a)
{
int n = this.coeffs.length;
int i;
for (i = 0; i < params.packDegree() / 8; i++)
{
this.coeffs[8 * i + 0] = (short)(((a[11 * i + 0] & 0xff) >>> 0) | (((short)(a[11 * i + 1] & 0xff) & 0x07) << 8));
this.coeffs[8 * i + 1] = (short)(((a[11 * i + 1] & 0xff) >>> 3) | (((short)(a[11 * i + 2] & 0xff) & 0x3f) << 5));
this.coeffs[8 * i + 2] = (short)(((a[11 * i + 2] & 0xff) >>> 6) | (((short)(a[11 * i + 3] & 0xff) & 0xff) << 2) | (((short)(a[11 * i + 4] & 0xff) & 0x01) << 10));
this.coeffs[8 * i + 3] = (short)(((a[11 * i + 4] & 0xff) >>> 1) | (((short)(a[11 * i + 5] & 0xff) & 0x0f) << 7));
this.coeffs[8 * i + 4] = (short)(((a[11 * i + 5] & 0xff) >>> 4) | (((short)(a[11 * i + 6] & 0xff) & 0x7f) << 4));
this.coeffs[8 * i + 5] = (short)(((a[11 * i + 6] & 0xff) >>> 7) | (((short)(a[11 * i + 7] & 0xff) & 0xff) << 1) | (((short)(a[11 * i + 8] & 0xff) & 0x03) << 9));
this.coeffs[8 * i + 6] = (short)(((a[11 * i + 8] & 0xff) >>> 2) | (((short)(a[11 * i + 9] & 0xff) & 0x1f) << 6));
this.coeffs[8 * i + 7] = (short)(((a[11 * i + 9] & 0xff) >>> 5) | (((short)(a[11 * i + 10] & 0xff) & 0xff) << 3));
}
switch (params.packDegree() & 0x07)
{
case 4:
{
this.coeffs[8 * i + 0] = (short)(((a[11 * i + 0] & 0xff) >>> 0) | (((short)(a[11 * i + 1] & 0xff) & 0x07) << 8));
this.coeffs[8 * i + 1] = (short)(((a[11 * i + 1] & 0xff) >>> 3) | (((short)(a[11 * i + 2] & 0xff) & 0x3f) << 5));
this.coeffs[8 * i + 2] = (short)(((a[11 * i + 2] & 0xff) >>> 6) | (((short)(a[11 * i + 3] & 0xff) & 0xff) << 2) | (((short)(a[11 * i + 4] & 0xff) & 0x01) << 10));
this.coeffs[8 * i + 3] = (short)(((a[11 * i + 4] & 0xff) >>> 1) | (((short)(a[11 * i + 5] & 0xff) & 0x0f) << 7));
break;
}
case 2:
{
this.coeffs[8 * i + 0] = (short)(((a[11 * i + 0] & 0xff) >>> 0) | (((short)(a[11 * i + 1] & 0xff) & 0x07) << 8));
this.coeffs[8 * i + 1] = (short)(((a[11 * i + 1] & 0xff) >>> 3) | (((short)(a[11 * i + 2] & 0xff) & 0x3f) << 5));
break;
}
}
this.coeffs[n - 1] = 0;
}
@Override
public void lift(Polynomial a)
{
int n = this.coeffs.length;
System.arraycopy(a.coeffs, 0, this.coeffs, 0, n);
this.z3ToZq();
}
@Override
public void r2Inv(Polynomial a)
{
HPSPolynomial f = new HPSPolynomial((NTRUHPSParameterSet)this.params);
HPSPolynomial g = new HPSPolynomial((NTRUHPSParameterSet)this.params);
HPSPolynomial v = new HPSPolynomial((NTRUHPSParameterSet)this.params);
HPSPolynomial w = new HPSPolynomial((NTRUHPSParameterSet)this.params);
this.r2Inv(a, f, g, v, w);
}
@Override
public void rqInv(Polynomial a)
{
HPSPolynomial ai2 = new HPSPolynomial((NTRUHPSParameterSet)this.params);
HPSPolynomial b = new HPSPolynomial((NTRUHPSParameterSet)this.params);
HPSPolynomial c = new HPSPolynomial((NTRUHPSParameterSet)this.params);
HPSPolynomial s = new HPSPolynomial((NTRUHPSParameterSet)this.params);
this.rqInv(a, ai2, b, c, s);
}
@Override
public void s3Inv(Polynomial a)
{
HPSPolynomial f = new HPSPolynomial((NTRUHPSParameterSet)this.params);
HPSPolynomial g = new HPSPolynomial((NTRUHPSParameterSet)this.params);
HPSPolynomial v = new HPSPolynomial((NTRUHPSParameterSet)this.params);
HPSPolynomial w = new HPSPolynomial((NTRUHPSParameterSet)this.params);
this.s3Inv(a, f, g, v, w);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy