org.bouncycastle.math.ec.custom.sec.SecP384R1FieldElement Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of bcprov-debug-jdk15to18 Show documentation
Show all versions of bcprov-debug-jdk15to18 Show documentation
The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for JDK 1.5 to JDK 1.8.
package org.bouncycastle.math.ec.custom.sec;
import java.math.BigInteger;
import org.bouncycastle.math.ec.ECFieldElement;
import org.bouncycastle.math.raw.Nat;
import org.bouncycastle.util.Arrays;
import org.bouncycastle.util.encoders.Hex;
public class SecP384R1FieldElement extends ECFieldElement.AbstractFp
{
public static final BigInteger Q = new BigInteger(1,
Hex.decodeStrict("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFF0000000000000000FFFFFFFF"));
protected int[] x;
public SecP384R1FieldElement(BigInteger x)
{
if (x == null || x.signum() < 0 || x.compareTo(Q) >= 0)
{
throw new IllegalArgumentException("x value invalid for SecP384R1FieldElement");
}
this.x = SecP384R1Field.fromBigInteger(x);
}
public SecP384R1FieldElement()
{
this.x = Nat.create(12);
}
protected SecP384R1FieldElement(int[] x)
{
this.x = x;
}
public boolean isZero()
{
return Nat.isZero(12, x);
}
public boolean isOne()
{
return Nat.isOne(12, x);
}
public boolean testBitZero()
{
return Nat.getBit(x, 0) == 1;
}
public BigInteger toBigInteger()
{
return Nat.toBigInteger(12, x);
}
public String getFieldName()
{
return "SecP384R1Field";
}
public int getFieldSize()
{
return Q.bitLength();
}
public ECFieldElement add(ECFieldElement b)
{
int[] z = Nat.create(12);
SecP384R1Field.add(x, ((SecP384R1FieldElement)b).x, z);
return new SecP384R1FieldElement(z);
}
public ECFieldElement addOne()
{
int[] z = Nat.create(12);
SecP384R1Field.addOne(x, z);
return new SecP384R1FieldElement(z);
}
public ECFieldElement subtract(ECFieldElement b)
{
int[] z = Nat.create(12);
SecP384R1Field.subtract(x, ((SecP384R1FieldElement)b).x, z);
return new SecP384R1FieldElement(z);
}
public ECFieldElement multiply(ECFieldElement b)
{
int[] z = Nat.create(12);
SecP384R1Field.multiply(x, ((SecP384R1FieldElement)b).x, z);
return new SecP384R1FieldElement(z);
}
public ECFieldElement divide(ECFieldElement b)
{
// return multiply(b.invert());
int[] z = Nat.create(12);
SecP384R1Field.inv(((SecP384R1FieldElement)b).x, z);
SecP384R1Field.multiply(z, x, z);
return new SecP384R1FieldElement(z);
}
public ECFieldElement negate()
{
int[] z = Nat.create(12);
SecP384R1Field.negate(x, z);
return new SecP384R1FieldElement(z);
}
public ECFieldElement square()
{
int[] z = Nat.create(12);
SecP384R1Field.square(x, z);
return new SecP384R1FieldElement(z);
}
public ECFieldElement invert()
{
// return new SecP384R1FieldElement(toBigInteger().modInverse(Q));
int[] z = Nat.create(12);
SecP384R1Field.inv(x, z);
return new SecP384R1FieldElement(z);
}
/**
* return a sqrt root - the routine verifies that the calculation returns the right value - if
* none exists it returns null.
*/
public ECFieldElement sqrt()
{
// Raise this element to the exponent 2^382 - 2^126 - 2^94 + 2^30
int[] x1 = this.x;
if (Nat.isZero(12, x1) || Nat.isOne(12, x1))
{
return this;
}
int[] tt0 = Nat.create(24);
int[] t1 = Nat.create(12);
int[] t2 = Nat.create(12);
int[] t3 = Nat.create(12);
int[] t4 = Nat.create(12);
SecP384R1Field.square(x1, t1, tt0);
SecP384R1Field.multiply(t1, x1, t1, tt0);
SecP384R1Field.squareN(t1, 2, t2, tt0);
SecP384R1Field.multiply(t2, t1, t2, tt0);
SecP384R1Field.square(t2, t2, tt0);
SecP384R1Field.multiply(t2, x1, t2, tt0);
SecP384R1Field.squareN(t2, 5, t3, tt0);
SecP384R1Field.multiply(t3, t2, t3, tt0);
SecP384R1Field.squareN(t3, 5, t4, tt0);
SecP384R1Field.multiply(t4, t2, t4, tt0);
SecP384R1Field.squareN(t4, 15, t2, tt0);
SecP384R1Field.multiply(t2, t4, t2, tt0);
SecP384R1Field.squareN(t2, 2, t3, tt0);
SecP384R1Field.multiply(t1, t3, t1, tt0);
SecP384R1Field.squareN(t3, 28, t3, tt0);
SecP384R1Field.multiply(t2, t3, t2, tt0);
SecP384R1Field.squareN(t2, 60, t3, tt0);
SecP384R1Field.multiply(t3, t2, t3, tt0);
int[] r = t2;
SecP384R1Field.squareN(t3, 120, r, tt0);
SecP384R1Field.multiply(r, t3, r, tt0);
SecP384R1Field.squareN(r, 15, r, tt0);
SecP384R1Field.multiply(r, t4, r, tt0);
SecP384R1Field.squareN(r, 33, r, tt0);
SecP384R1Field.multiply(r, t1, r, tt0);
SecP384R1Field.squareN(r, 64, r, tt0);
SecP384R1Field.multiply(r, x1, r, tt0);
SecP384R1Field.squareN(r, 30, t1, tt0);
SecP384R1Field.square(t1, t2, tt0);
return Nat.eq(12, x1, t2) ? new SecP384R1FieldElement(t1) : null;
}
public boolean equals(Object other)
{
if (other == this)
{
return true;
}
if (!(other instanceof SecP384R1FieldElement))
{
return false;
}
SecP384R1FieldElement o = (SecP384R1FieldElement)other;
return Nat.eq(12, x, o.x);
}
public int hashCode()
{
return Q.hashCode() ^ Arrays.hashCode(x, 0, 12);
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy