org.bouncycastle.pqc.crypto.sphincsplus.HarakaSBase Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of bcprov-debug-jdk15to18 Show documentation
Show all versions of bcprov-debug-jdk15to18 Show documentation
The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for JDK 1.5 to JDK 1.8.
package org.bouncycastle.pqc.crypto.sphincsplus;
import org.bouncycastle.util.Arrays;
/**
* Haraka-512 v2, https://eprint.iacr.org/2016/098.pdf
*
* Haraka512-256 with reference to Python Reference Impl from: https://github.com/sphincs/sphincsplus
*
*/
class HarakaSBase
{
protected long[][] haraka512_rc = new long[][]{
{0x24cf0ab9086f628bL, 0xbdd6eeecc83b8382L, 0xd96fb0306cdad0a7L, 0xaace082ac8f95f89L, 0x449d8e8870d7041fL, 0x49bb2f80b2b3e2f8L, 0x0569ae98d93bb258L, 0x23dc9691e7d6a4b1L},
{0xd8ba10ede0fe5b6eL, 0x7ecf7dbe424c7b8eL, 0x6ea9949c6df62a31L, 0xbf3f3c97ec9c313eL, 0x241d03a196a1861eL, 0xead3a51116e5a2eaL, 0x77d479fcad9574e3L, 0x18657a1af894b7a0L},
{0x10671e1a7f595522L, 0xd9a00ff675d28c7bL, 0x2f1edf0d2b9ba661L, 0xb8ff58b8e3de45f9L, 0xee29261da9865c02L, 0xd1532aa4b50bdf43L, 0x8bf858159b231bb1L, 0xdf17439d22d4f599L},
{0xdd4b2f0870b918c0L, 0x757a81f3b39b1bb6L, 0x7a5c556898952e3fL, 0x7dd70a16d915d87aL, 0x3ae61971982b8301L, 0xc3ab319e030412beL, 0x17c0033ac094a8cbL, 0x5a0630fc1a8dc4efL},
{0x17708988c1632f73L, 0xf92ddae090b44f4fL, 0x11ac0285c43aa314L, 0x509059941936b8baL, 0xd03e152fa2ce9b69L, 0x3fbcbcb63a32998bL, 0x6204696d692254f7L, 0x915542ed93ec59b4L},
{0xf4ed94aa8879236eL, 0xff6cb41cd38e03c0L, 0x069b38602368aeabL, 0x669495b820f0ddbaL, 0xf42013b1b8bf9e3dL, 0xcf935efe6439734dL, 0xbc1dcf42ca29e3f8L, 0x7e6d3ed29f78ad67L},
{0xf3b0f6837ffcddaaL, 0x3a76faef934ddf41L, 0xcec7ae583a9c8e35L, 0xe4dd18c68f0260afL, 0x2c0e5df1ad398eaaL, 0x478df5236ae22e8cL, 0xfb944c46fe865f39L, 0xaa48f82f028132baL},
{0x231b9ae2b76aca77L, 0x292a76a712db0b40L, 0x5850625dc8134491L, 0x73137dd469810fb5L, 0x8a12a6a202a474fdL, 0xd36fd9daa78bdb80L, 0xb34c5e733505706fL, 0xbaf1cdca818d9d96L},
{0x2e99781335e8c641L, 0xbddfe5cce47d560eL, 0xf74e9bf32e5e040cL, 0x1d7a709d65996be9L, 0x670df36a9cf66cddL, 0xd05ef84a176a2875L, 0x0f888e828cb1c44eL, 0x1a79e9c9727b052cL},
{0x83497348628d84deL, 0x2e9387d51f22a754L, 0xb000068da2f852d6L, 0x378c9e1190fd6fe5L, 0x870027c316de7293L, 0xe51a9d4462e047bbL, 0x90ecf7f8c6251195L, 0x655953bfbed90a9cL},
};
protected int[][] haraka256_rc = new int[10][8];
protected final byte[] buffer;
protected int off;
protected HarakaSBase()
{
this.buffer = new byte[64];
off = 0;
}
protected void reset()
{
off = 0;
Arrays.clear(buffer);
}
private void brRangeDec32Le(byte[] input, int[] output, int inputPos)
{
int tmp;
for (int i = 0; i < output.length; ++i)
{
tmp = inputPos + (i << 2);
output[i] = (input[tmp] & 0xFF) | ((input[tmp + 1] << 8) & 0xFF00) | (((int)input[tmp + 2] << 16) & 0xFF0000) | ((int)input[tmp + 3] << 24);
}
}
protected void interleaveConstant(long[] output, byte[] input, int startPos)
{
int[] tmp_32_constant = new int[16];
int i;
brRangeDec32Le(input, tmp_32_constant, startPos);
for (i = 0; i < 4; ++i)
{
brAesCt64InterleaveIn(output, i, tmp_32_constant, i << 2);
}
brAesCt64Ortho(output);
}
protected void interleaveConstant32(int[] output, byte[] input, int startPos)
{
for (int i = 0; i < 4; ++i)
{
output[i << 1] = brDec32Le(input, startPos + (i << 2));
output[(i << 1) + 1] = brDec32Le(input, startPos + (i << 2) + 16);
}
brAesCtOrtho(output);
}
private int brDec32Le(byte[] input, int startPos)
{
return (input[startPos] & 0xFF) | ((input[startPos + 1] << 8) & 0xFF00) | (((int)input[startPos + 2] << 16) & 0xFF0000) | ((int)input[startPos + 3] << 24);
}
protected void haraka512Perm(byte[] output)
{
int[] w = new int[16];
long[] q = new long[8];
long tmp_q;
int i, j;
brRangeDec32Le(buffer, w, 0);
for (i = 0; i < 4; ++i)
{
brAesCt64InterleaveIn(q, i, w, i << 2);
}
brAesCt64Ortho(q);
for (i = 0; i < 5; ++i)
{
for (j = 0; j < 2; ++j)
{
brAesCt64BitsliceSbox(q);
shiftRows(q);
mixColumns(q);
addRoundKey(q, haraka512_rc[(i << 1) + j]);
}
for (j = 0; j < 8; j++)
{
tmp_q = q[j];
q[j] = (tmp_q & 0x0001000100010001L) << 5 |
(tmp_q & 0x0002000200020002L) << 12 |
(tmp_q & 0x0004000400040004L) >>> 1 |
(tmp_q & 0x0008000800080008L) << 6 |
(tmp_q & 0x0020002000200020L) << 9 |
(tmp_q & 0x0040004000400040L) >>> 4 |
(tmp_q & 0x0080008000800080L) << 3 |
(tmp_q & 0x2100210021002100L) >>> 5 |
(tmp_q & 0x0210021002100210L) << 2 |
(tmp_q & 0x0800080008000800L) << 4 |
(tmp_q & 0x1000100010001000L) >>> 12 |
(tmp_q & 0x4000400040004000L) >>> 10 |
(tmp_q & 0x8400840084008400L) >>> 3;
}
}
brAesCt64Ortho(q);
for (i = 0; i < 4; i++)
{
brAesCt64InterleaveOut(w, q, i);
}
for (i = 0; i < 16; ++i)
{
for (j = 0; j < 4; ++j)
{
output[(i << 2) + j] = (byte)((w[i] >>> (j << 3)) & 0xFF);
}
}
}
protected void haraka256Perm(byte[] output)
{
int[] q = new int[8];
int tmp_q, i, j;
interleaveConstant32(q, buffer, 0);
for (i = 0; i < 5; ++i)
{
for (j = 0; j < 2; ++j)
{
brAesCtBitsliceSbox(q);
shiftRows32(q);
mixColumns32(q);
addRoundKey32(q, haraka256_rc[(i << 1) + j]);
}
for (j = 0; j < 8; j++)
{
tmp_q = q[j];
q[j] = (tmp_q & 0x81818181) |
(tmp_q & 0x02020202) << 1 |
(tmp_q & 0x04040404) << 2 |
(tmp_q & 0x08080808) << 3 |
(tmp_q & 0x10101010) >>> 3 |
(tmp_q & 0x20202020) >>> 2 |
(tmp_q & 0x40404040) >>> 1;
}
}
brAesCtOrtho(q);
for (i = 0; i < 4; i++)
{
brEnc32Le(output, q[i << 1], i << 2);
brEnc32Le(output, q[(i << 1) + 1], (i << 2) + 16);
}
}
private void brEnc32Le(byte[] dst, int x, int startPos)
{
for (int i = 0; i < 4; ++i)
{
dst[startPos + i] = (byte)(x >> (i << 3));
}
}
private void brAesCt64InterleaveIn(long[] q, int qPos, int[] w, int startPos)
{
long x0, x1, x2, x3;
x0 = w[startPos] & 0x00000000FFFFFFFFL;
x1 = w[startPos + 1] & 0x00000000FFFFFFFFL;
x2 = w[startPos + 2] & 0x00000000FFFFFFFFL;
x3 = w[startPos + 3] & 0x00000000FFFFFFFFL;
x0 |= x0 << 16;
x1 |= x1 << 16;
x2 |= x2 << 16;
x3 |= x3 << 16;
x0 &= 0x0000FFFF0000FFFFL;
x1 &= 0x0000FFFF0000FFFFL;
x2 &= 0x0000FFFF0000FFFFL;
x3 &= 0x0000FFFF0000FFFFL;
x0 |= x0 << 8;
x1 |= x1 << 8;
x2 |= x2 << 8;
x3 |= x3 << 8;
x0 &= 0x00FF00FF00FF00FFL;
x1 &= 0x00FF00FF00FF00FFL;
x2 &= 0x00FF00FF00FF00FFL;
x3 &= 0x00FF00FF00FF00FFL;
q[qPos] = x0 | (x2 << 8);
q[qPos + 4] = x1 | (x3 << 8);
}
private static void brAesCtBitsliceSbox(int[] q)
{
/*
* This S-box implementation is a straightforward translation of
* the circuit described by Boyar and Peralta in "A new
* combinational logic minimization technique with applications
* to cryptology" (https://eprint.iacr.org/2009/191.pdf).
*
* Note that variables x* (input) and s* (output) are numbered
* in "reverse" order (x0 is the high bit, x7 is the low bit).
*/
int x0, x1, x2, x3, x4, x5, x6, x7;
int y1, y2, y3, y4, y5, y6, y7, y8, y9;
int y10, y11, y12, y13, y14, y15, y16, y17, y18, y19;
int y20, y21;
int z0, z1, z2, z3, z4, z5, z6, z7, z8, z9;
int z10, z11, z12, z13, z14, z15, z16, z17;
int t0, t1, t2, t3, t4, t5, t6, t7, t8, t9;
int t10, t11, t12, t13, t14, t15, t16, t17, t18, t19;
int t20, t21, t22, t23, t24, t25, t26, t27, t28, t29;
int t30, t31, t32, t33, t34, t35, t36, t37, t38, t39;
int t40, t41, t42, t43, t44, t45, t46, t47, t48, t49;
int t50, t51, t52, t53, t54, t55, t56, t57, t58, t59;
int t60, t61, t62, t63, t64, t65, t66, t67;
int s0, s1, s2, s3, s4, s5, s6, s7;
x0 = q[7];
x1 = q[6];
x2 = q[5];
x3 = q[4];
x4 = q[3];
x5 = q[2];
x6 = q[1];
x7 = q[0];
/*
* Top linear transformation.
*/
y14 = x3 ^ x5;
y13 = x0 ^ x6;
y9 = x0 ^ x3;
y8 = x0 ^ x5;
t0 = x1 ^ x2;
y1 = t0 ^ x7;
y4 = y1 ^ x3;
y12 = y13 ^ y14;
y2 = y1 ^ x0;
y5 = y1 ^ x6;
y3 = y5 ^ y8;
t1 = x4 ^ y12;
y15 = t1 ^ x5;
y20 = t1 ^ x1;
y6 = y15 ^ x7;
y10 = y15 ^ t0;
y11 = y20 ^ y9;
y7 = x7 ^ y11;
y17 = y10 ^ y11;
y19 = y10 ^ y8;
y16 = t0 ^ y11;
y21 = y13 ^ y16;
y18 = x0 ^ y16;
/*
* Non-linear section.
*/
t2 = y12 & y15;
t3 = y3 & y6;
t4 = t3 ^ t2;
t5 = y4 & x7;
t6 = t5 ^ t2;
t7 = y13 & y16;
t8 = y5 & y1;
t9 = t8 ^ t7;
t10 = y2 & y7;
t11 = t10 ^ t7;
t12 = y9 & y11;
t13 = y14 & y17;
t14 = t13 ^ t12;
t15 = y8 & y10;
t16 = t15 ^ t12;
t17 = t4 ^ t14;
t18 = t6 ^ t16;
t19 = t9 ^ t14;
t20 = t11 ^ t16;
t21 = t17 ^ y20;
t22 = t18 ^ y19;
t23 = t19 ^ y21;
t24 = t20 ^ y18;
t25 = t21 ^ t22;
t26 = t21 & t23;
t27 = t24 ^ t26;
t28 = t25 & t27;
t29 = t28 ^ t22;
t30 = t23 ^ t24;
t31 = t22 ^ t26;
t32 = t31 & t30;
t33 = t32 ^ t24;
t34 = t23 ^ t33;
t35 = t27 ^ t33;
t36 = t24 & t35;
t37 = t36 ^ t34;
t38 = t27 ^ t36;
t39 = t29 & t38;
t40 = t25 ^ t39;
t41 = t40 ^ t37;
t42 = t29 ^ t33;
t43 = t29 ^ t40;
t44 = t33 ^ t37;
t45 = t42 ^ t41;
z0 = t44 & y15;
z1 = t37 & y6;
z2 = t33 & x7;
z3 = t43 & y16;
z4 = t40 & y1;
z5 = t29 & y7;
z6 = t42 & y11;
z7 = t45 & y17;
z8 = t41 & y10;
z9 = t44 & y12;
z10 = t37 & y3;
z11 = t33 & y4;
z12 = t43 & y13;
z13 = t40 & y5;
z14 = t29 & y2;
z15 = t42 & y9;
z16 = t45 & y14;
z17 = t41 & y8;
/*
* Bottom linear transformation.
*/
t46 = z15 ^ z16;
t47 = z10 ^ z11;
t48 = z5 ^ z13;
t49 = z9 ^ z10;
t50 = z2 ^ z12;
t51 = z2 ^ z5;
t52 = z7 ^ z8;
t53 = z0 ^ z3;
t54 = z6 ^ z7;
t55 = z16 ^ z17;
t56 = z12 ^ t48;
t57 = t50 ^ t53;
t58 = z4 ^ t46;
t59 = z3 ^ t54;
t60 = t46 ^ t57;
t61 = z14 ^ t57;
t62 = t52 ^ t58;
t63 = t49 ^ t58;
t64 = z4 ^ t59;
t65 = t61 ^ t62;
t66 = z1 ^ t63;
s0 = t59 ^ t63;
s6 = t56 ^ ~t62;
s7 = t48 ^ ~t60;
t67 = t64 ^ t65;
s3 = t53 ^ t66;
s4 = t51 ^ t66;
s5 = t47 ^ t65;
s1 = t64 ^ ~s3;
s2 = t55 ^ ~t67;
q[7] = s0;
q[6] = s1;
q[5] = s2;
q[4] = s3;
q[3] = s4;
q[2] = s5;
q[1] = s6;
q[0] = s7;
}
private void shiftRows32(int[] q)
{
int x;
for (int i = 0; i < 8; i++)
{
x = q[i];
q[i] = (x & 0x000000FF)
| ((x & 0x0000FC00) >>> 2) | ((x & 0x00000300) << 6)
| ((x & 0x00F00000) >>> 4) | ((x & 0x000F0000) << 4)
| ((x & 0xC0000000) >>> 6) | ((x & 0x3F000000) << 2);
}
}
private void mixColumns32(int[] q)
{
int q0, q1, q2, q3, q4, q5, q6, q7;
int r0, r1, r2, r3, r4, r5, r6, r7;
q0 = q[0];
q1 = q[1];
q2 = q[2];
q3 = q[3];
q4 = q[4];
q5 = q[5];
q6 = q[6];
q7 = q[7];
r0 = (q0 >>> 8) | (q0 << 24);
r1 = (q1 >>> 8) | (q1 << 24);
r2 = (q2 >>> 8) | (q2 << 24);
r3 = (q3 >>> 8) | (q3 << 24);
r4 = (q4 >>> 8) | (q4 << 24);
r5 = (q5 >>> 8) | (q5 << 24);
r6 = (q6 >>> 8) | (q6 << 24);
r7 = (q7 >>> 8) | (q7 << 24);
q[0] = q7 ^ r7 ^ r0 ^ rotr16(q0 ^ r0);
q[1] = q0 ^ r0 ^ q7 ^ r7 ^ r1 ^ rotr16(q1 ^ r1);
q[2] = q1 ^ r1 ^ r2 ^ rotr16(q2 ^ r2);
q[3] = q2 ^ r2 ^ q7 ^ r7 ^ r3 ^ rotr16(q3 ^ r3);
q[4] = q3 ^ r3 ^ q7 ^ r7 ^ r4 ^ rotr16(q4 ^ r4);
q[5] = q4 ^ r4 ^ r5 ^ rotr16(q5 ^ r5);
q[6] = q5 ^ r5 ^ r6 ^ rotr16(q6 ^ r6);
q[7] = q6 ^ r6 ^ r7 ^ rotr16(q7 ^ r7);
}
private void addRoundKey32(int[] q, int[] sk)
{
q[0] ^= sk[0];
q[1] ^= sk[1];
q[2] ^= sk[2];
q[3] ^= sk[3];
q[4] ^= sk[4];
q[5] ^= sk[5];
q[6] ^= sk[6];
q[7] ^= sk[7];
}
private int rotr16(int x)
{
return (x << 16) | (x >>> 16);
}
private void brAesCt64Ortho(long[] q)
{
Swapn(q, 1, 0, 1);
Swapn(q, 1, 2, 3);
Swapn(q, 1, 4, 5);
Swapn(q, 1, 6, 7);
Swapn(q, 2, 0, 2);
Swapn(q, 2, 1, 3);
Swapn(q, 2, 4, 6);
Swapn(q, 2, 5, 7);
Swapn(q, 4, 0, 4);
Swapn(q, 4, 1, 5);
Swapn(q, 4, 2, 6);
Swapn(q, 4, 3, 7);
}
private void brAesCtOrtho(int[] q)
{
Swapn32(q, 1, 0, 1);
Swapn32(q, 1, 2, 3);
Swapn32(q, 1, 4, 5);
Swapn32(q, 1, 6, 7);
Swapn32(q, 2, 0, 2);
Swapn32(q, 2, 1, 3);
Swapn32(q, 2, 4, 6);
Swapn32(q, 2, 5, 7);
Swapn32(q, 4, 0, 4);
Swapn32(q, 4, 1, 5);
Swapn32(q, 4, 2, 6);
Swapn32(q, 4, 3, 7);
}
private void Swapn32(int[] q, int s, int pos1, int pos2)
{
int cl = 0, ch = 0;
switch (s)
{
case 1:
cl = 0x55555555;
ch = 0xAAAAAAAA;
break;
case 2:
cl = 0x33333333;
ch = 0xCCCCCCCC;
break;
case 4:
cl = 0x0F0F0F0F;
ch = 0xF0F0F0F0;
break;
}
int a = q[pos1], b = q[pos2];
q[pos1] = (a & cl) | ((b & cl) << s);
q[pos2] = ((a & ch) >>> s) | (b & ch);
}
private void Swapn(long[] q, int s, int pos1, int pos2)
{
long cl = 0, ch = 0;
switch (s)
{
case 1:
cl = 0x5555555555555555L;
ch = 0xAAAAAAAAAAAAAAAAL;
break;
case 2:
cl = 0x3333333333333333L;
ch = 0xCCCCCCCCCCCCCCCCL;
break;
case 4:
cl = 0x0F0F0F0F0F0F0F0FL;
ch = 0xF0F0F0F0F0F0F0F0L;
break;
default:
return;
}
long a = q[pos1], b = q[pos2];
q[pos1] = (a & cl) | ((b & cl) << s);
q[pos2] = ((a & ch) >>> s) | (b & ch);
}
private void brAesCt64BitsliceSbox(long[] q)
{
/*
* This S-box implementation is a straightforward translation of
* the circuit described by Boyar and Peralta in "A new
* combinational logic minimization technique with applications
* to cryptology" (https://eprint.iacr.org/2009/191.pdf).
*
* Note that variables x* (input) and s* (output) are numbered
* in "reverse" order (x0 is the high bit, x7 is the low bit).
*/
long x0, x1, x2, x3, x4, x5, x6, x7;
long y1, y2, y3, y4, y5, y6, y7, y8, y9;
long y10, y11, y12, y13, y14, y15, y16, y17, y18, y19;
long y20, y21;
long z0, z1, z2, z3, z4, z5, z6, z7, z8, z9;
long z10, z11, z12, z13, z14, z15, z16, z17;
long t0, t1, t2, t3, t4, t5, t6, t7, t8, t9;
long t10, t11, t12, t13, t14, t15, t16, t17, t18, t19;
long t20, t21, t22, t23, t24, t25, t26, t27, t28, t29;
long t30, t31, t32, t33, t34, t35, t36, t37, t38, t39;
long t40, t41, t42, t43, t44, t45, t46, t47, t48, t49;
long t50, t51, t52, t53, t54, t55, t56, t57, t58, t59;
long t60, t61, t62, t63, t64, t65, t66, t67;
long s0, s1, s2, s3, s4, s5, s6, s7;
x0 = q[7];
x1 = q[6];
x2 = q[5];
x3 = q[4];
x4 = q[3];
x5 = q[2];
x6 = q[1];
x7 = q[0];
/*
* Top linear transformation.
*/
y14 = x3 ^ x5;
y13 = x0 ^ x6;
y9 = x0 ^ x3;
y8 = x0 ^ x5;
t0 = x1 ^ x2;
y1 = t0 ^ x7;
y4 = y1 ^ x3;
y12 = y13 ^ y14;
y2 = y1 ^ x0;
y5 = y1 ^ x6;
y3 = y5 ^ y8;
t1 = x4 ^ y12;
y15 = t1 ^ x5;
y20 = t1 ^ x1;
y6 = y15 ^ x7;
y10 = y15 ^ t0;
y11 = y20 ^ y9;
y7 = x7 ^ y11;
y17 = y10 ^ y11;
y19 = y10 ^ y8;
y16 = t0 ^ y11;
y21 = y13 ^ y16;
y18 = x0 ^ y16;
/*
* Non-linear section.
*/
t2 = y12 & y15;
t3 = y3 & y6;
t4 = t3 ^ t2;
t5 = y4 & x7;
t6 = t5 ^ t2;
t7 = y13 & y16;
t8 = y5 & y1;
t9 = t8 ^ t7;
t10 = y2 & y7;
t11 = t10 ^ t7;
t12 = y9 & y11;
t13 = y14 & y17;
t14 = t13 ^ t12;
t15 = y8 & y10;
t16 = t15 ^ t12;
t17 = t4 ^ t14;
t18 = t6 ^ t16;
t19 = t9 ^ t14;
t20 = t11 ^ t16;
t21 = t17 ^ y20;
t22 = t18 ^ y19;
t23 = t19 ^ y21;
t24 = t20 ^ y18;
t25 = t21 ^ t22;
t26 = t21 & t23;
t27 = t24 ^ t26;
t28 = t25 & t27;
t29 = t28 ^ t22;
t30 = t23 ^ t24;
t31 = t22 ^ t26;
t32 = t31 & t30;
t33 = t32 ^ t24;
t34 = t23 ^ t33;
t35 = t27 ^ t33;
t36 = t24 & t35;
t37 = t36 ^ t34;
t38 = t27 ^ t36;
t39 = t29 & t38;
t40 = t25 ^ t39;
t41 = t40 ^ t37;
t42 = t29 ^ t33;
t43 = t29 ^ t40;
t44 = t33 ^ t37;
t45 = t42 ^ t41;
z0 = t44 & y15;
z1 = t37 & y6;
z2 = t33 & x7;
z3 = t43 & y16;
z4 = t40 & y1;
z5 = t29 & y7;
z6 = t42 & y11;
z7 = t45 & y17;
z8 = t41 & y10;
z9 = t44 & y12;
z10 = t37 & y3;
z11 = t33 & y4;
z12 = t43 & y13;
z13 = t40 & y5;
z14 = t29 & y2;
z15 = t42 & y9;
z16 = t45 & y14;
z17 = t41 & y8;
/*
* Bottom linear transformation.
*/
t46 = z15 ^ z16;
t47 = z10 ^ z11;
t48 = z5 ^ z13;
t49 = z9 ^ z10;
t50 = z2 ^ z12;
t51 = z2 ^ z5;
t52 = z7 ^ z8;
t53 = z0 ^ z3;
t54 = z6 ^ z7;
t55 = z16 ^ z17;
t56 = z12 ^ t48;
t57 = t50 ^ t53;
t58 = z4 ^ t46;
t59 = z3 ^ t54;
t60 = t46 ^ t57;
t61 = z14 ^ t57;
t62 = t52 ^ t58;
t63 = t49 ^ t58;
t64 = z4 ^ t59;
t65 = t61 ^ t62;
t66 = z1 ^ t63;
s0 = t59 ^ t63;
s6 = t56 ^ ~t62;
s7 = t48 ^ ~t60;
t67 = t64 ^ t65;
s3 = t53 ^ t66;
s4 = t51 ^ t66;
s5 = t47 ^ t65;
s1 = t64 ^ ~s3;
s2 = t55 ^ ~t67;
q[7] = s0;
q[6] = s1;
q[5] = s2;
q[4] = s3;
q[3] = s4;
q[2] = s5;
q[1] = s6;
q[0] = s7;
}
private void shiftRows(long[] q)
{
long x;
for (int i = 0; i < q.length; i++)
{
x = q[i];
q[i] = (x & 0x000000000000FFFFL)
| ((x & 0x00000000FFF00000L) >>> 4)
| ((x & 0x00000000000F0000L) << 12)
| ((x & 0x0000FF0000000000L) >>> 8)
| ((x & 0x000000FF00000000L) << 8)
| ((x & 0xF000000000000000L) >>> 12)
| ((x & 0x0FFF000000000000L) << 4);
}
}
private void mixColumns(long[] q)
{
long q0, q1, q2, q3, q4, q5, q6, q7;
long r0, r1, r2, r3, r4, r5, r6, r7;
q0 = q[0];
q1 = q[1];
q2 = q[2];
q3 = q[3];
q4 = q[4];
q5 = q[5];
q6 = q[6];
q7 = q[7];
r0 = (q0 >>> 16) | (q0 << 48);
r1 = (q1 >>> 16) | (q1 << 48);
r2 = (q2 >>> 16) | (q2 << 48);
r3 = (q3 >>> 16) | (q3 << 48);
r4 = (q4 >>> 16) | (q4 << 48);
r5 = (q5 >>> 16) | (q5 << 48);
r6 = (q6 >>> 16) | (q6 << 48);
r7 = (q7 >>> 16) | (q7 << 48);
q[0] = q7 ^ r7 ^ r0 ^ rotr32(q0 ^ r0);
q[1] = q0 ^ r0 ^ q7 ^ r7 ^ r1 ^ rotr32(q1 ^ r1);
q[2] = q1 ^ r1 ^ r2 ^ rotr32(q2 ^ r2);
q[3] = q2 ^ r2 ^ q7 ^ r7 ^ r3 ^ rotr32(q3 ^ r3);
q[4] = q3 ^ r3 ^ q7 ^ r7 ^ r4 ^ rotr32(q4 ^ r4);
q[5] = q4 ^ r4 ^ r5 ^ rotr32(q5 ^ r5);
q[6] = q5 ^ r5 ^ r6 ^ rotr32(q6 ^ r6);
q[7] = q6 ^ r6 ^ r7 ^ rotr32(q7 ^ r7);
}
private long rotr32(long x)
{
return (x << 32) | (x >>> 32);
}
private void addRoundKey(long[] q, long[] sk)
{
q[0] ^= sk[0];
q[1] ^= sk[1];
q[2] ^= sk[2];
q[3] ^= sk[3];
q[4] ^= sk[4];
q[5] ^= sk[5];
q[6] ^= sk[6];
q[7] ^= sk[7];
}
private void brAesCt64InterleaveOut(int[] w, long[] q, int pos)
{
long x0, x1, x2, x3;
x0 = q[pos] & 0x00FF00FF00FF00FFL;
x1 = q[pos + 4] & 0x00FF00FF00FF00FFL;
x2 = (q[pos] >>> 8) & 0x00FF00FF00FF00FFL;
x3 = (q[pos + 4] >>> 8) & 0x00FF00FF00FF00FFL;
x0 |= (x0 >>> 8);
x1 |= (x1 >>> 8);
x2 |= (x2 >>> 8);
x3 |= (x3 >>> 8);
x0 &= 0x0000FFFF0000FFFFL;
x1 &= 0x0000FFFF0000FFFFL;
x2 &= 0x0000FFFF0000FFFFL;
x3 &= 0x0000FFFF0000FFFFL;
pos <<= 2;
w[pos] = (int)(x0 | (x0 >>> 16));
w[pos + 1] = (int)(x1 | (x1 >>> 16));
w[pos + 2] = (int)(x2 | (x2 >>> 16));
w[pos + 3] = (int)(x3 | (x3 >>> 16));
}
protected static void xor(byte[] x, int xOff, byte[] y, int yOff, byte[] z, int zOff, int zLen)
{
for (int i = 0; i < zLen; i++)
{
z[zOff + i] = (byte)(x[xOff + i] ^ y[yOff + i]);
}
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy