org.bouncycastle.pqc.crypto.cmce.GF13 Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of bcprov-debug-jdk15to18 Show documentation
Show all versions of bcprov-debug-jdk15to18 Show documentation
The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for JDK 1.5 to JDK 1.8.
package org.bouncycastle.pqc.crypto.cmce;
import org.bouncycastle.math.raw.Interleave;
final class GF13
extends GF
{
GF13()
{
}
protected void gf_mul_poly(int length, int[] poly, short[] out, short[] left, short[] right, int[] temp)
{
temp[0] = gf_mul_ext(left[0], right[0]);
for (int i = 1; i < length; i++)
{
temp[i + i - 1] = 0;
short left_i = left[i];
short right_i = right[i];
for (int j = 0; j < i; j++)
{
temp[i + j] ^= gf_mul_ext_par(left_i, right[j], left[j], right_i);
}
temp[i + i] = gf_mul_ext(left_i, right_i);
}
for (int i = (length - 1) * 2; i >= length; i--)
{
int temp_i = temp[i];
for (int j = 0; j < poly.length; j++)
{
temp[i - length + poly[j]] ^= temp_i;
}
}
for (int i = 0; i < length; ++i)
{
out[i] = gf_reduce(temp[i]);
}
}
protected void gf_sqr_poly(int length, int[] poly, short[] out, short[] input, int[] temp)
{
temp[0] = gf_sq_ext(input[0]);
for (int i = 1; i < length; i++)
{
temp[i + i - 1] = 0;
temp[i + i] = gf_sq_ext(input[i]);
}
for (int i = (length - 1) * 2; i >= length; i--)
{
int temp_i = temp[i];
for (int j = 0; j < poly.length; j++)
{
temp[i - length + poly[j]] ^= temp_i;
}
}
for (int i = 0; i < length; ++i)
{
out[i] = gf_reduce(temp[i]);
}
}
/* input: field element den, num */
/* return: (num/den) */
protected short gf_frac(short den, short num)
{
short tmp_11;
short tmp_1111;
short out;
tmp_11 = gf_sqmul(den, den); // ^11
tmp_1111 = gf_sq2mul(tmp_11, tmp_11); // ^1111
out = gf_sq2(tmp_1111);
out = gf_sq2mul(out, tmp_1111); // ^11111111
out = gf_sq2(out);
out = gf_sq2mul(out, tmp_1111); // ^111111111111
return gf_sqmul(out, num); // ^1111111111110 = ^-1
}
protected short gf_inv(short den)
{
return gf_frac(den, (short)1);
}
protected short gf_mul(short in0, short in1)
{
int x = in0;
int y = in1;
int z = x * (y & 1);
for (int i = 1; i < 13; i++)
{
z ^= x * (y & (1 << i));
}
return gf_reduce(z);
}
protected int gf_mul_ext(short in0, short in1)
{
int x = in0, y = in1;
int z = x * (y & 1);
for (int i = 1; i < 13; i++)
{
z ^= x * (y & (1 << i));
}
return z;
}
private int gf_mul_ext_par(short in0, short in1, short in2, short in3)
{
int x0 = in0, y0 = in1, x1 = in2, y1 = in3;
int z0 = x0 * (y0 & 1);
int z1 = x1 * (y1 & 1);
for (int i = 1; i < 13; i++)
{
z0 ^= x0 * (y0 & (1 << i));
z1 ^= x1 * (y1 & (1 << i));
}
return z0 ^ z1;
}
protected short gf_reduce(int x)
{
// assert (x >>> 26) == 0;
int u0 = x & 0x00001FFF;
int u1 = x >>> 13;
int t2 = (u1 << 4) ^ (u1 << 3) ^ (u1 << 1);
int u2 = t2 >>> 13;
int u3 = t2 & 0x00001FFF;
int u4 = (u2 << 4) ^ (u2 << 3) ^ (u2 << 1);
return (short)(u0 ^ u1 ^ u2 ^ u3 ^ u4);
}
protected short gf_sq(short input)
{
int z = Interleave.expand16to32(input);
return gf_reduce(z);
}
protected int gf_sq_ext(short input)
{
return Interleave.expand16to32(input);
}
/* input: field element in */
/* return: (in^2)^2 */
private short gf_sq2(short in)
{
int z1 = Interleave.expand16to32(in);
in = gf_reduce(z1);
int z2 = Interleave.expand16to32(in);
return gf_reduce(z2);
}
/* input: field element in, m */
/* return: (in^2)*m */
private short gf_sqmul(short in, short m)
{
long t0 = in;
long t1 = m;
long x = (t1 << 6) * (t0 & (1 << 6));
t0 ^= t0 << 7;
x ^= (t1 << 0) * (t0 & 0x04001);
x ^= (t1 << 1) * (t0 & 0x08002);
x ^= (t1 << 2) * (t0 & 0x10004);
x ^= (t1 << 3) * (t0 & 0x20008);
x ^= (t1 << 4) * (t0 & 0x40010);
x ^= (t1 << 5) * (t0 & 0x80020);
long t;
t = x & 0x0000001FFC000000L;
x ^= (t >>> 18) ^ (t >>> 20) ^ (t >>> 24) ^ (t >>> 26);
return gf_reduce((int)x & 0x03FFFFFF);
}
/* input: field element in, m */
/* return: ((in^2)^2)*m */
private short gf_sq2mul(short in, short m)
{
long t0 = in;
long t1 = m;
long x = (t1 << 18) * (t0 & (1 << 6));
t0 ^= t0 << 21;
x ^= (t1 << 0) * (t0 & (0x010000001L));
x ^= (t1 << 3) * (t0 & (0x020000002L));
x ^= (t1 << 6) * (t0 & (0x040000004L));
x ^= (t1 << 9) * (t0 & (0x080000008L));
x ^= (t1 << 12) * (t0 & (0x100000010L));
x ^= (t1 << 15) * (t0 & (0x200000020L));
long t;
t = x & 0x1FFFF80000000000L;
x ^= (t >>> 18) ^ (t >>> 20) ^ (t >>> 24) ^ (t >>> 26);
t = x & 0x000007FFFC000000L;
x ^= (t >>> 18) ^ (t >>> 20) ^ (t >>> 24) ^ (t >>> 26);
return gf_reduce((int)x & 0x03FFFFFF);
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy