All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.bouncycastle.pqc.legacy.crypto.ntru.NTRUEngine Maven / Gradle / Ivy

Go to download

The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for JDK 1.5 to JDK 1.8.

There is a newer version: 1.79
Show newest version
package org.bouncycastle.pqc.legacy.crypto.ntru;

import java.security.SecureRandom;

import org.bouncycastle.crypto.AsymmetricBlockCipher;
import org.bouncycastle.crypto.CipherParameters;
import org.bouncycastle.crypto.CryptoServicesRegistrar;
import org.bouncycastle.crypto.DataLengthException;
import org.bouncycastle.crypto.Digest;
import org.bouncycastle.crypto.InvalidCipherTextException;
import org.bouncycastle.crypto.params.ParametersWithRandom;
import org.bouncycastle.pqc.legacy.math.ntru.polynomial.DenseTernaryPolynomial;
import org.bouncycastle.pqc.legacy.math.ntru.polynomial.IntegerPolynomial;
import org.bouncycastle.pqc.legacy.math.ntru.polynomial.Polynomial;
import org.bouncycastle.pqc.legacy.math.ntru.polynomial.ProductFormPolynomial;
import org.bouncycastle.pqc.legacy.math.ntru.polynomial.SparseTernaryPolynomial;
import org.bouncycastle.pqc.legacy.math.ntru.polynomial.TernaryPolynomial;
import org.bouncycastle.util.Arrays;

/**
 * Encrypts, decrypts data and generates key pairs.
* The parameter p is hardcoded to 3. */ public class NTRUEngine implements AsymmetricBlockCipher { private boolean forEncryption; private NTRUEncryptionParameters params; private NTRUEncryptionPublicKeyParameters pubKey; private NTRUEncryptionPrivateKeyParameters privKey; private SecureRandom random; /** * Constructs a new instance with a set of encryption parameters. * */ public NTRUEngine() { } public void init(boolean forEncryption, CipherParameters parameters) { this.forEncryption = forEncryption; SecureRandom providedRandom = null; if (parameters instanceof ParametersWithRandom) { ParametersWithRandom withRandom = (ParametersWithRandom)parameters; providedRandom = withRandom.getRandom(); parameters = withRandom.getParameters(); } if (forEncryption) { this.pubKey = (NTRUEncryptionPublicKeyParameters)parameters; this.privKey = null; this.params = pubKey.getParameters(); this.random = CryptoServicesRegistrar.getSecureRandom(providedRandom); } else { this.pubKey = null; this.privKey = (NTRUEncryptionPrivateKeyParameters)parameters; this.params = privKey.getParameters(); this.random = null; } } public int getInputBlockSize() { return params.maxMsgLenBytes; } public int getOutputBlockSize() { return ((params.N * log2(params.q)) + 7) / 8; } public byte[] processBlock(byte[] in, int inOff, int len) throws InvalidCipherTextException { byte[] tmp = new byte[len]; System.arraycopy(in, inOff, tmp, 0, len); if (forEncryption) { return encrypt(tmp, pubKey); } else { return decrypt(tmp, privKey); } } /** * Encrypts a message.
* See P1363.1 section 9.2.2. * * @param m The message to encrypt * @param pubKey the public key to encrypt the message with * @return the encrypted message */ private byte[] encrypt(byte[] m, NTRUEncryptionPublicKeyParameters pubKey) { IntegerPolynomial pub = pubKey.h; int N = params.N; int q = params.q; int maxLenBytes = params.maxMsgLenBytes; int db = params.db; int bufferLenBits = params.bufferLenBits; int dm0 = params.dm0; int pkLen = params.pkLen; int minCallsMask = params.minCallsMask; boolean hashSeed = params.hashSeed; byte[] oid = params.oid; int l = m.length; if (maxLenBytes > 255) { throw new IllegalArgumentException("llen values bigger than 1 are not supported"); } if (l > maxLenBytes) { throw new DataLengthException("Message too long: " + l + ">" + maxLenBytes); } while (true) { // M = b|octL|m|p0 byte[] b = new byte[db / 8]; random.nextBytes(b); byte[] p0 = new byte[maxLenBytes + 1 - l]; byte[] M = new byte[bufferLenBits / 8]; System.arraycopy(b, 0, M, 0, b.length); M[b.length] = (byte)l; System.arraycopy(m, 0, M, b.length + 1, m.length); System.arraycopy(p0, 0, M, b.length + 1 + m.length, p0.length); IntegerPolynomial mTrin = IntegerPolynomial.fromBinary3Sves(M, N); // sData = OID|m|b|hTrunc byte[] bh = pub.toBinary(q); byte[] hTrunc = copyOf(bh, pkLen / 8); byte[] sData = buildSData(oid, m, l, b, hTrunc); Polynomial r = generateBlindingPoly(sData, M); IntegerPolynomial R = r.mult(pub, q); IntegerPolynomial R4 = (IntegerPolynomial)R.clone(); R4.modPositive(4); byte[] oR4 = R4.toBinary(4); IntegerPolynomial mask = MGF(oR4, N, minCallsMask, hashSeed); mTrin.add(mask); mTrin.mod3(); if (mTrin.count(-1) < dm0) { continue; } if (mTrin.count(0) < dm0) { continue; } if (mTrin.count(1) < dm0) { continue; } R.add(mTrin, q); R.ensurePositive(q); return R.toBinary(q); } } private byte[] buildSData(byte[] oid, byte[] m, int l, byte[] b, byte[] hTrunc) { byte[] sData = new byte[oid.length + l + b.length + hTrunc.length]; System.arraycopy(oid, 0, sData, 0, oid.length); System.arraycopy(m, 0, sData, oid.length, m.length); System.arraycopy(b, 0, sData, oid.length + m.length, b.length); System.arraycopy(hTrunc, 0, sData, oid.length + m.length + b.length, hTrunc.length); return sData; } protected IntegerPolynomial encrypt(IntegerPolynomial m, TernaryPolynomial r, IntegerPolynomial pubKey) { IntegerPolynomial e = r.mult(pubKey, params.q); e.add(m, params.q); e.ensurePositive(params.q); return e; } /** * Deterministically generates a blinding polynomial from a seed and a message representative. * * @param seed * @param M message representative * @return a blinding polynomial */ private Polynomial generateBlindingPoly(byte[] seed, byte[] M) { IndexGenerator ig = new IndexGenerator(seed, params); if (params.polyType == NTRUParameters.TERNARY_POLYNOMIAL_TYPE_PRODUCT) { SparseTernaryPolynomial r1 = new SparseTernaryPolynomial(generateBlindingCoeffs(ig, params.dr1)); SparseTernaryPolynomial r2 = new SparseTernaryPolynomial(generateBlindingCoeffs(ig, params.dr2)); SparseTernaryPolynomial r3 = new SparseTernaryPolynomial(generateBlindingCoeffs(ig, params.dr3)); return new ProductFormPolynomial(r1, r2, r3); } else { int dr = params.dr; boolean sparse = params.sparse; int[] r = generateBlindingCoeffs(ig, dr); if (sparse) { return new SparseTernaryPolynomial(r); } else { return new DenseTernaryPolynomial(r); } } } /** * Generates an int array containing dr elements equal to 1 * and dr elements equal to -1 using an index generator. * * @param ig an index generator * @param dr number of ones / negative ones * @return an array containing numbers between -1 and 1 */ private int[] generateBlindingCoeffs(IndexGenerator ig, int dr) { int N = params.N; int[] r = new int[N]; for (int coeff = -1; coeff <= 1; coeff += 2) { int t = 0; while (t < dr) { int i = ig.nextIndex(); if (r[i] == 0) { r[i] = coeff; t++; } } } return r; } /** * An implementation of MGF-TP-1 from P1363.1 section 8.4.1.1. * * @param seed * @param N * @param minCallsR * @param hashSeed whether to hash the seed */ private IntegerPolynomial MGF(byte[] seed, int N, int minCallsR, boolean hashSeed) { Digest hashAlg = params.hashAlg; int hashLen = hashAlg.getDigestSize(); byte[] buf = new byte[minCallsR * hashLen]; byte[] Z = hashSeed ? calcHash(hashAlg, seed) : seed; int counter = 0; while (counter < minCallsR) { hashAlg.update(Z, 0, Z.length); putInt(hashAlg, counter); byte[] hash = calcHash(hashAlg); System.arraycopy(hash, 0, buf, counter * hashLen, hashLen); counter++; } IntegerPolynomial i = new IntegerPolynomial(N); while (true) { int cur = 0; for (int index = 0; index != buf.length; index++) { int O = (int)buf[index] & 0xFF; if (O >= 243) // 243 = 3^5 { continue; } for (int terIdx = 0; terIdx < 4; terIdx++) { int rem3 = O % 3; i.coeffs[cur] = rem3 - 1; cur++; if (cur == N) { return i; } O = (O - rem3) / 3; } i.coeffs[cur] = O - 1; cur++; if (cur == N) { return i; } } if (cur >= N) { return i; } hashAlg.update(Z, 0, Z.length); putInt(hashAlg, counter); byte[] hash = calcHash(hashAlg); buf = hash; counter++; } } private void putInt(Digest hashAlg, int counter) { hashAlg.update((byte)(counter >> 24)); hashAlg.update((byte)(counter >> 16)); hashAlg.update((byte)(counter >> 8)); hashAlg.update((byte)counter); } private byte[] calcHash(Digest hashAlg) { byte[] tmp = new byte[hashAlg.getDigestSize()]; hashAlg.doFinal(tmp, 0); return tmp; } private byte[] calcHash(Digest hashAlg, byte[] input) { byte[] tmp = new byte[hashAlg.getDigestSize()]; hashAlg.update(input, 0, input.length); hashAlg.doFinal(tmp, 0); return tmp; } /** * Decrypts a message.
* See P1363.1 section 9.2.3. * * @param data The message to decrypt * @param privKey the corresponding private key * @return the decrypted message * @throws InvalidCipherTextException if the encrypted data is invalid, or maxLenBytes is greater than 255 */ private byte[] decrypt(byte[] data, NTRUEncryptionPrivateKeyParameters privKey) throws InvalidCipherTextException { Polynomial priv_t = privKey.t; IntegerPolynomial priv_fp = privKey.fp; IntegerPolynomial pub = privKey.h; int N = params.N; int q = params.q; int db = params.db; int maxMsgLenBytes = params.maxMsgLenBytes; int dm0 = params.dm0; int pkLen = params.pkLen; int minCallsMask = params.minCallsMask; boolean hashSeed = params.hashSeed; byte[] oid = params.oid; if (maxMsgLenBytes > 255) { throw new DataLengthException("maxMsgLenBytes values bigger than 255 are not supported"); } int bLen = db / 8; IntegerPolynomial e = IntegerPolynomial.fromBinary(data, N, q); IntegerPolynomial ci = decrypt(e, priv_t, priv_fp); if (ci.count(-1) < dm0) { throw new InvalidCipherTextException("Less than dm0 coefficients equal -1"); } if (ci.count(0) < dm0) { throw new InvalidCipherTextException("Less than dm0 coefficients equal 0"); } if (ci.count(1) < dm0) { throw new InvalidCipherTextException("Less than dm0 coefficients equal 1"); } IntegerPolynomial cR = (IntegerPolynomial)e.clone(); cR.sub(ci); cR.modPositive(q); IntegerPolynomial cR4 = (IntegerPolynomial)cR.clone(); cR4.modPositive(4); byte[] coR4 = cR4.toBinary(4); IntegerPolynomial mask = MGF(coR4, N, minCallsMask, hashSeed); IntegerPolynomial cMTrin = ci; cMTrin.sub(mask); cMTrin.mod3(); byte[] cM = cMTrin.toBinary3Sves(); byte[] cb = new byte[bLen]; System.arraycopy(cM, 0, cb, 0, bLen); int cl = cM[bLen] & 0xFF; // llen=1, so read one byte if (cl > maxMsgLenBytes) { throw new InvalidCipherTextException("Message too long: " + cl + ">" + maxMsgLenBytes); } byte[] cm = new byte[cl]; System.arraycopy(cM, bLen + 1, cm, 0, cl); byte[] p0 = new byte[cM.length - (bLen + 1 + cl)]; System.arraycopy(cM, bLen + 1 + cl, p0, 0, p0.length); if (!Arrays.constantTimeAreEqual(p0, new byte[p0.length])) { throw new InvalidCipherTextException("The message is not followed by zeroes"); } // sData = OID|m|b|hTrunc byte[] bh = pub.toBinary(q); byte[] hTrunc = copyOf(bh, pkLen / 8); byte[] sData = buildSData(oid, cm, cl, cb, hTrunc); Polynomial cr = generateBlindingPoly(sData, cm); IntegerPolynomial cRPrime = cr.mult(pub); cRPrime.modPositive(q); if (!cRPrime.equals(cR)) { throw new InvalidCipherTextException("Invalid message encoding"); } return cm; } /** * @param e * @param priv_t a polynomial such that if fastFp=true, f=1+3*priv_t; otherwise, f=priv_t * @param priv_fp * @return an IntegerPolynomial representing the output. */ protected IntegerPolynomial decrypt(IntegerPolynomial e, Polynomial priv_t, IntegerPolynomial priv_fp) { IntegerPolynomial a; if (params.fastFp) { a = priv_t.mult(e, params.q); a.mult(3); a.add(e); } else { a = priv_t.mult(e, params.q); } a.center0(params.q); a.mod3(); IntegerPolynomial c = params.fastFp ? a : new DenseTernaryPolynomial(a).mult(priv_fp, 3); c.center0(3); return c; } private byte[] copyOf(byte[] src, int len) { byte[] tmp = new byte[len]; System.arraycopy(src, 0, tmp, 0, len < src.length ? len : src.length); return tmp; } private int log2(int value) { if (value == 2048) { return 11; } throw new IllegalStateException("log2 not fully implemented"); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy