All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.bouncycastle.crypto.engines.DESedeWrapEngine Maven / Gradle / Ivy

Go to download

The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for JDK 1.5 to JDK 1.8.

The newest version!
package org.bouncycastle.crypto.engines;

import java.security.SecureRandom;

import org.bouncycastle.crypto.CipherParameters;
import org.bouncycastle.crypto.CryptoServicesRegistrar;
import org.bouncycastle.crypto.Digest;
import org.bouncycastle.crypto.InvalidCipherTextException;
import org.bouncycastle.crypto.Wrapper;
import org.bouncycastle.crypto.modes.CBCBlockCipher;
import org.bouncycastle.crypto.params.KeyParameter;
import org.bouncycastle.crypto.params.ParametersWithIV;
import org.bouncycastle.crypto.params.ParametersWithRandom;
import org.bouncycastle.crypto.util.DigestFactory;
import org.bouncycastle.util.Arrays;

/**
 * Wrap keys according to
 * 
 * RFC 3217.
 * 

* Note: *

    *
  • if you are using this to wrap triple-des keys you need to set the * parity bits on the key and, if it's a two-key triple-des key, pad it * yourself. *
*/ public class DESedeWrapEngine implements Wrapper { /** Field engine */ private CBCBlockCipher engine; /** Field param */ private KeyParameter param; /** Field paramPlusIV */ private ParametersWithIV paramPlusIV; /** Field iv */ private byte[] iv; /** Field forWrapping */ private boolean forWrapping; /** Field IV2 */ private static final byte[] IV2 = { (byte) 0x4a, (byte) 0xdd, (byte) 0xa2, (byte) 0x2c, (byte) 0x79, (byte) 0xe8, (byte) 0x21, (byte) 0x05 }; // // checksum digest // Digest sha1 = DigestFactory.createSHA1(); byte[] digest = new byte[20]; /** * Method init * * @param forWrapping true if for wrapping, false otherwise. * @param param necessary parameters, may include KeyParameter, ParametersWithRandom, and ParametersWithIV */ public void init(boolean forWrapping, CipherParameters param) { this.forWrapping = forWrapping; this.engine = new CBCBlockCipher(new DESedeEngine()); SecureRandom sr; if (param instanceof ParametersWithRandom) { ParametersWithRandom pr = (ParametersWithRandom) param; param = pr.getParameters(); sr = pr.getRandom(); } else { sr = CryptoServicesRegistrar.getSecureRandom(); } if (param instanceof KeyParameter) { this.param = (KeyParameter)param; if (this.forWrapping) { // Hm, we have no IV but we want to wrap ?!? // well, then we have to create our own IV. this.iv = new byte[8]; sr.nextBytes(iv); this.paramPlusIV = new ParametersWithIV(this.param, this.iv); } } else if (param instanceof ParametersWithIV) { this.paramPlusIV = (ParametersWithIV)param; this.iv = this.paramPlusIV.getIV(); this.param = (KeyParameter)this.paramPlusIV.getParameters(); if (this.forWrapping) { if ((this.iv == null) || (this.iv.length != 8)) { throw new IllegalArgumentException("IV is not 8 octets"); } } else { throw new IllegalArgumentException( "You should not supply an IV for unwrapping"); } } } /** * Method getAlgorithmName * * @return the algorithm name "DESede". */ public String getAlgorithmName() { return "DESede"; } /** * Method wrap * * @param in byte array containing the encoded key. * @param inOff off set into in that the data starts at. * @param inLen length of the data. * @return the wrapped bytes. */ public byte[] wrap(byte[] in, int inOff, int inLen) { if (!forWrapping) { throw new IllegalStateException("Not initialized for wrapping"); } byte keyToBeWrapped[] = new byte[inLen]; System.arraycopy(in, inOff, keyToBeWrapped, 0, inLen); // Compute the CMS Key Checksum, (section 5.6.1), call this CKS. byte[] CKS = calculateCMSKeyChecksum(keyToBeWrapped); // Let WKCKS = WK || CKS where || is concatenation. byte[] WKCKS = new byte[keyToBeWrapped.length + CKS.length]; System.arraycopy(keyToBeWrapped, 0, WKCKS, 0, keyToBeWrapped.length); System.arraycopy(CKS, 0, WKCKS, keyToBeWrapped.length, CKS.length); // Encrypt WKCKS in CBC mode using KEK as the key and IV as the // initialization vector. Call the results TEMP1. int blockSize = engine.getBlockSize(); if (WKCKS.length % blockSize != 0) { throw new IllegalStateException("Not multiple of block length"); } engine.init(true, paramPlusIV); byte TEMP1[] = new byte[WKCKS.length]; for (int currentBytePos = 0; currentBytePos != WKCKS.length; currentBytePos += blockSize) { engine.processBlock(WKCKS, currentBytePos, TEMP1, currentBytePos); } // Let TEMP2 = IV || TEMP1. byte[] TEMP2 = new byte[this.iv.length + TEMP1.length]; System.arraycopy(this.iv, 0, TEMP2, 0, this.iv.length); System.arraycopy(TEMP1, 0, TEMP2, this.iv.length, TEMP1.length); // Reverse the order of the octets in TEMP2. Arrays.reverseInPlace(TEMP2); // Encrypt TEMP3 in CBC mode using the KEK and an initialization vector // of 0x 4a dd a2 2c 79 e8 21 05. The resulting cipher text is the desired // result. It is 40 octets long if a 168 bit key is being wrapped. ParametersWithIV param2 = new ParametersWithIV(this.param, IV2); this.engine.init(true, param2); for (int currentBytePos = 0; currentBytePos != TEMP2.length; currentBytePos += blockSize) { engine.processBlock(TEMP2, currentBytePos, TEMP2, currentBytePos); } return TEMP2; } /** * Method unwrap * * @param in byte array containing the wrapped key. * @param inOff off set into in that the data starts at. * @param inLen length of the data. * @return the unwrapped bytes. * @throws InvalidCipherTextException */ public byte[] unwrap(byte[] in, int inOff, int inLen) throws InvalidCipherTextException { if (forWrapping) { throw new IllegalStateException("Not set for unwrapping"); } if (in == null) { throw new InvalidCipherTextException("Null pointer as ciphertext"); } final int blockSize = engine.getBlockSize(); if (inLen % blockSize != 0) { throw new InvalidCipherTextException("Ciphertext not multiple of " + blockSize); } /* // Check if the length of the cipher text is reasonable given the key // type. It must be 40 bytes for a 168 bit key and either 32, 40, or // 48 bytes for a 128, 192, or 256 bit key. If the length is not supported // or inconsistent with the algorithm for which the key is intended, // return error. // // we do not accept 168 bit keys. it has to be 192 bit. int lengthA = (estimatedKeyLengthInBit / 8) + 16; int lengthB = estimatedKeyLengthInBit % 8; if ((lengthA != keyToBeUnwrapped.length) || (lengthB != 0)) { throw new XMLSecurityException("empty"); } */ // Decrypt the cipher text with TRIPLedeS in CBC mode using the KEK // and an initialization vector (IV) of 0x4adda22c79e82105. Call the output TEMP3. ParametersWithIV param2 = new ParametersWithIV(this.param, IV2); this.engine.init(false, param2); byte TEMP2[] = new byte[inLen]; for (int currentBytePos = 0; currentBytePos != inLen; currentBytePos += blockSize) { engine.processBlock(in, inOff + currentBytePos, TEMP2, currentBytePos); } // Reverse the order of the octets in TEMP2. Arrays.reverseInPlace(TEMP2); // Decompose TEMP2 into IV, the first 8 octets, and TEMP1, the remaining octets. this.iv = new byte[8]; byte[] TEMP1 = new byte[TEMP2.length - 8]; System.arraycopy(TEMP2, 0, this.iv, 0, 8); System.arraycopy(TEMP2, 8, TEMP1, 0, TEMP2.length - 8); // Decrypt TEMP1 using TRIPLedeS in CBC mode using the KEK and the IV // found in the previous step. Call the result WKCKS. this.paramPlusIV = new ParametersWithIV(this.param, this.iv); this.engine.init(false, this.paramPlusIV); byte[] WKCKS = new byte[TEMP1.length]; for (int currentBytePos = 0; currentBytePos != WKCKS.length; currentBytePos += blockSize) { engine.processBlock(TEMP1, currentBytePos, WKCKS, currentBytePos); } // Decompose WKCKS. CKS is the last 8 octets and WK, the wrapped key, are // those octets before the CKS. byte[] result = new byte[WKCKS.length - 8]; byte[] CKStoBeVerified = new byte[8]; System.arraycopy(WKCKS, 0, result, 0, WKCKS.length - 8); System.arraycopy(WKCKS, WKCKS.length - 8, CKStoBeVerified, 0, 8); // Calculate a CMS Key Checksum, (section 5.6.1), over the WK and compare // with the CKS extracted in the above step. If they are not equal, return error. if (!checkCMSKeyChecksum(result, CKStoBeVerified)) { throw new InvalidCipherTextException( "Checksum inside ciphertext is corrupted"); } // WK is the wrapped key, now extracted for use in data decryption. return result; } /** * Some key wrap algorithms make use of the Key Checksum defined * in CMS [CMS-Algorithms]. This is used to provide an integrity * check value for the key being wrapped. The algorithm is * * - Compute the 20 octet SHA-1 hash on the key being wrapped. * - Use the first 8 octets of this hash as the checksum value. * * For details see https://www.w3.org/TR/xmlenc-core/#sec-CMSKeyChecksum. * * @param key the key to check, * @return the CMS checksum. * @throws RuntimeException */ private byte[] calculateCMSKeyChecksum( byte[] key) { byte[] result = new byte[8]; sha1.update(key, 0, key.length); sha1.doFinal(digest, 0); System.arraycopy(digest, 0, result, 0, 8); return result; } /** * For details see https://www.w3.org/TR/xmlenc-core/#sec-CMSKeyChecksum * * @param key key to be validated. * @param checksum the checksum. * @return true if okay, false otherwise. */ private boolean checkCMSKeyChecksum( byte[] key, byte[] checksum) { return Arrays.constantTimeAreEqual(calculateCMSKeyChecksum(key), checksum); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy