All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.bouncycastle.crypto.engines.IDEAEngine Maven / Gradle / Ivy

Go to download

The Bouncy Castle Crypto package is a Java implementation of cryptographic algorithms. This jar contains JCE provider and lightweight API for the Bouncy Castle Cryptography APIs for JDK 1.5 to JDK 1.8.

The newest version!
package org.bouncycastle.crypto.engines;

import org.bouncycastle.crypto.BlockCipher;
import org.bouncycastle.crypto.CipherParameters;
import org.bouncycastle.crypto.CryptoServicesRegistrar;
import org.bouncycastle.crypto.DataLengthException;
import org.bouncycastle.crypto.OutputLengthException;
import org.bouncycastle.crypto.constraints.DefaultServiceProperties;
import org.bouncycastle.crypto.params.KeyParameter;

/**
 * A class that provides a basic International Data Encryption Algorithm (IDEA) engine.
 * 

* This implementation is based on the "HOWTO: INTERNATIONAL DATA ENCRYPTION ALGORITHM" * implementation summary by Fauzan Mirza ([email protected]). (barring 1 typo at the * end of the mulinv function!). *

* It can be found at ftp://ftp.funet.fi/pub/crypt/cryptography/symmetric/idea/ *

* Note: This algorithm was patented in the USA, Japan and Europe. These patents expired in 2011/2012. */ public class IDEAEngine implements BlockCipher { protected static final int BLOCK_SIZE = 8; private int[] workingKey = null; private boolean forEncryption; /** * standard constructor. */ public IDEAEngine() { CryptoServicesRegistrar.checkConstraints(new DefaultServiceProperties(getAlgorithmName(), 128)); } /** * initialise an IDEA cipher. * * @param forEncryption whether or not we are for encryption. * @param params the parameters required to set up the cipher. * @exception IllegalArgumentException if the params argument is * inappropriate. */ public void init( boolean forEncryption, CipherParameters params) { if (params instanceof KeyParameter) { byte[] key = ((KeyParameter)params).getKey(); workingKey = generateWorkingKey(forEncryption, key); this.forEncryption = forEncryption; CryptoServicesRegistrar.checkConstraints(new DefaultServiceProperties(getAlgorithmName(), key.length * 8, params, Utils.getPurpose(forEncryption))); return; } throw new IllegalArgumentException("invalid parameter passed to IDEA init - " + params.getClass().getName()); } public String getAlgorithmName() { return "IDEA"; } public int getBlockSize() { return BLOCK_SIZE; } public int processBlock( byte[] in, int inOff, byte[] out, int outOff) { if (workingKey == null) { throw new IllegalStateException("IDEA engine not initialised"); } if ((inOff + BLOCK_SIZE) > in.length) { throw new DataLengthException("input buffer too short"); } if ((outOff + BLOCK_SIZE) > out.length) { throw new OutputLengthException("output buffer too short"); } ideaFunc(workingKey, in, inOff, out, outOff); return BLOCK_SIZE; } public void reset() { } private static final int MASK = 0xffff; private static final int BASE = 0x10001; private int bytesToWord( byte[] in, int inOff) { return ((in[inOff] << 8) & 0xff00) + (in[inOff + 1] & 0xff); } private void wordToBytes( int word, byte[] out, int outOff) { out[outOff] = (byte)(word >>> 8); out[outOff + 1] = (byte)word; } /** * return x = x * y where the multiplication is done modulo * 65537 (0x10001) (as defined in the IDEA specification) and * a zero input is taken to be 65536 (0x10000). * * @param x the x value * @param y the y value * @return x = x * y */ private int mul( int x, int y) { if (x == 0) { x = (BASE - y); } else if (y == 0) { x = (BASE - x); } else { int p = x * y; y = p & MASK; x = p >>> 16; x = y - x + ((y < x) ? 1 : 0); } return x & MASK; } private void ideaFunc( int[] workingKey, byte[] in, int inOff, byte[] out, int outOff) { int x0, x1, x2, x3, t0, t1; int keyOff = 0; x0 = bytesToWord(in, inOff); x1 = bytesToWord(in, inOff + 2); x2 = bytesToWord(in, inOff + 4); x3 = bytesToWord(in, inOff + 6); for (int round = 0; round < 8; round++) { x0 = mul(x0, workingKey[keyOff++]); x1 += workingKey[keyOff++]; x1 &= MASK; x2 += workingKey[keyOff++]; x2 &= MASK; x3 = mul(x3, workingKey[keyOff++]); t0 = x1; t1 = x2; x2 ^= x0; x1 ^= x3; x2 = mul(x2, workingKey[keyOff++]); x1 += x2; x1 &= MASK; x1 = mul(x1, workingKey[keyOff++]); x2 += x1; x2 &= MASK; x0 ^= x1; x3 ^= x2; x1 ^= t1; x2 ^= t0; } wordToBytes(mul(x0, workingKey[keyOff++]), out, outOff); wordToBytes(x2 + workingKey[keyOff++], out, outOff + 2); /* NB: Order */ wordToBytes(x1 + workingKey[keyOff++], out, outOff + 4); wordToBytes(mul(x3, workingKey[keyOff]), out, outOff + 6); } /** * The following function is used to expand the user key to the encryption * subkey. The first 16 bytes are the user key, and the rest of the subkey * is calculated by rotating the previous 16 bytes by 25 bits to the left, * and so on until the subkey is completed. */ private int[] expandKey( byte[] uKey) { int[] key = new int[52]; if (uKey.length < 16) { byte[] tmp = new byte[16]; System.arraycopy(uKey, 0, tmp, tmp.length - uKey.length, uKey.length); uKey = tmp; } for (int i = 0; i < 8; i++) { key[i] = bytesToWord(uKey, i * 2); } for (int i = 8; i < 52; i++) { if ((i & 7) < 6) { key[i] = ((key[i - 7] & 127) << 9 | key[i - 6] >> 7) & MASK; } else if ((i & 7) == 6) { key[i] = ((key[i - 7] & 127) << 9 | key[i - 14] >> 7) & MASK; } else { key[i] = ((key[i - 15] & 127) << 9 | key[i - 14] >> 7) & MASK; } } return key; } /** * This function computes multiplicative inverse using Euclid's Greatest * Common Divisor algorithm. Zero and one are self inverse. *

* i.e. x * mulInv(x) == 1 (modulo BASE) */ private int mulInv( int x) { int t0, t1, q, y; if (x < 2) { return x; } t0 = 1; t1 = BASE / x; y = BASE % x; while (y != 1) { q = x / y; x = x % y; t0 = (t0 + (t1 * q)) & MASK; if (x == 1) { return t0; } q = y / x; y = y % x; t1 = (t1 + (t0 * q)) & MASK; } return (1 - t1) & MASK; } /** * Return the additive inverse of x. *

* i.e. x + addInv(x) == 0 */ int addInv( int x) { return (0 - x) & MASK; } /** * The function to invert the encryption subkey to the decryption subkey. * It also involves the multiplicative inverse and the additive inverse functions. */ private int[] invertKey( int[] inKey) { int t1, t2, t3, t4; int p = 52; /* We work backwards */ int[] key = new int[52]; int inOff = 0; t1 = mulInv(inKey[inOff++]); t2 = addInv(inKey[inOff++]); t3 = addInv(inKey[inOff++]); t4 = mulInv(inKey[inOff++]); key[--p] = t4; key[--p] = t3; key[--p] = t2; key[--p] = t1; for (int round = 1; round < 8; round++) { t1 = inKey[inOff++]; t2 = inKey[inOff++]; key[--p] = t2; key[--p] = t1; t1 = mulInv(inKey[inOff++]); t2 = addInv(inKey[inOff++]); t3 = addInv(inKey[inOff++]); t4 = mulInv(inKey[inOff++]); key[--p] = t4; key[--p] = t2; /* NB: Order */ key[--p] = t3; key[--p] = t1; } t1 = inKey[inOff++]; t2 = inKey[inOff++]; key[--p] = t2; key[--p] = t1; t1 = mulInv(inKey[inOff++]); t2 = addInv(inKey[inOff++]); t3 = addInv(inKey[inOff++]); t4 = mulInv(inKey[inOff]); key[--p] = t4; key[--p] = t3; key[--p] = t2; key[--p] = t1; return key; } private int[] generateWorkingKey( boolean forEncryption, byte[] userKey) { if (forEncryption) { return expandKey(userKey); } else { return invertKey(expandKey(userKey)); } } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy